ThisiscontentfromElsevier'sDrugInformation

    Tirzepatide

    Learn more about Elsevier’s Drug Information today! Get the reliable drug data and decision support you need to enhance patient safety through timely and accessible information.

    Nov.18.2024

    Tirzepatide

    Indications/Dosage

    Labeled

    • obesity
    • type 2 diabetes mellitus
    • weight management

    Off-Label

      † Off-label indication

      For the treatment of type 2 diabetes mellitus as an adjunct to diet and exercise

      Subcutaneous dosage (Mounjaro)

      Adults

      2.5 mg subcutaneously once weekly for 4 weeks, then 5 mg subcutaneously once weekly, initially. May increase dose by 2.5 mg/week after at least 4 weeks if needed. Max: 15 mg/week. The 2.5 mg dose is for treatment initiation and is not intended for glycemic control.[67631]

      For the treatment of obesity and for chronic weight management as an adjunct to a reduced-calorie diet and increased physical activity

      NOTE: Tirzepatide is indicated in adults with obesity or adults with overweight in the presence of at least one weight-related comorbid condition.[69808]

      Subcutaneous dosage (Zepbound)

      Adults

      2.5 mg subcutaneously once weekly for 4 weeks, then 5 mg subcutaneously once weekly, initially. May increase the dose by 2.5 mg/week after at least 4 weeks; adjust dose based on clinical response and tolerability. Consider a lower maintenance dose if a higher dose is not tolerated. Usual dose: 5, 10, or 15 mg/week. Max: 15 mg/week. LIMITATIONS OF USE: Co-administration with other tirzepatide-containing products or with any glucagon-like peptide-1 (GLP-1) receptor agonist is not recommended.[69808]

      Therapeutic Drug Monitoring

      • Individualize glycemic goals based on a risk-benefit assessment.
      • Use higher goals in patients with persistent hypoglycemia.
      • Monitor post-prandial glucose concentrations if there is any inconsistency between pre-prandial glucose and A1C concentrations and to help assess basal-bolus regimens.[64926]

       

      Blood glucose goals for adults with type 1 or type 2 diabetes [64926]:

      • Pre-prandial = 80 to 130 mg/dL
      • Peak post-prandial = less than 180 mg/dL

       

      A1C goals for adults with type 1 or type 2 diabetes [64926]:

      • Assess A1C at least 2 times a year in patients who are meeting treatment goals (and who have stable glycemic control). Perform A1C test quarterly in patients whose therapy has changed or who are not meeting glycemic goals.
      • In general, an A1C target is less than 7% in nonpregnant adults.[50321][64926]
        • A more stringent goal of less than 6.5% may be appropriate for selected individual patients if this can be achieved without significant hypoglycemia or other adverse effects.[60608]
        • Less stringent goals (e.g., A1C less than 8%) may be appropriate for patients with a history of severe hypoglycemia, limited life expectancy, advanced microvascular/macrovascular complications, or extensive comorbid conditions.[64926]

      Maximum Dosage Limits

      • Adults

        15 mg/week subcutaneously for the treatment of type 2 diabetes mellitus; 15 mg/week subcutaneously for the treatment of obesity.

      • Geriatric

        15 mg/week subcutaneously for the treatment of type 2 diabetes mellitus; 15 mg/week subcutaneously for the treatment of obesity.

      • Adolescents

        Safety and efficacy have not been established.

      • Children

        Safety and efficacy have not been established.

      • Infants

        Safety and efficacy have not been established.

      • Neonates

        Safety and efficacy have not been established.

      Patients with Hepatic Impairment Dosing

      No dosage adjustments are needed.[67631][69808]

      Patients with Renal Impairment Dosing

      No dosage adjustments have been recommended. Monitor renal function when initiating or escalating doses of tirzepatide in patients with renal impairment who report severe adverse gastrointestinal reactions.[67631][69808]

      † Off-label indication
      Revision Date: 11/18/2024, 10:01:50 PM

      References

      50321 - Davies MJ, Aroda VR, Collins BS, et al. Management of hyperglycemia in Type 2 Diabetes, 2022. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 2022;11:2753-2786.60608 - Samson SL, Vellanki P, Blonde L, et al. Consensus Statement by The American Association of Clinical Endocrinologists and American College of Endocrinology on the Comprehensive Type 2 Diabetes Management Algorithm 2023 Update. Endocrine Pract 2023;29:305-340.64926 - American Diabetes Association. Standards of Medical Care in Diabetes - 2024. Diabetes Care. 2024; 47(Suppl 1):S1-S321. Available at: https://diabetesjournals.org/care/issue/47/Supplement_167631 - Mounjaro (tirzepatide) injection package insert. Indianapolis, IN: Eli Lilly and Company; 2024 Nov.69808 - Zepbound (tirzepatide) injection package insert. Indianapolis, IN: Eli Lilly and Company; 2024 Nov.

      How Supplied

      Tirzepatide Bulk powder

      Tirzepatide Powder for Compounding (14403-0017) (Hybio Pharmaceutical Co., Ltd.) null

      Tirzepatide Solution for injection

      MOUNJARO 2.5mg/0.5mL Prefilled Pen Solution for Injection (00002-1506) (Eli Lilly and Co) nullMOUNJARO 2.5mg/0.5mL Prefilled Pen Solution for Injection package photo

      Tirzepatide Solution for injection

      MOUNJARO 5mg/0.5mL Prefilled Pen Solution for Injection (00002-1495) (Eli Lilly and Co) nullMOUNJARO 5mg/0.5mL Prefilled Pen Solution for Injection package photo

      Tirzepatide Solution for injection

      MOUNJARO 7.5mg/0.5mL Prefilled Pen Solution for Injection (00002-1484) (Eli Lilly and Co) nullMOUNJARO 7.5mg/0.5mL Prefilled Pen Solution for Injection package photo

      Tirzepatide Solution for injection

      MOUNJARO 10mg/0.5mL Prefilled Pen Solution for Injection (00002-1471) (Eli Lilly and Co) nullMOUNJARO 10mg/0.5mL Prefilled Pen Solution for Injection package photo

      Tirzepatide Solution for injection

      MOUNJARO 12.5mg/0.5mL Prefilled Pen Solution for Injection (00002-1460) (Eli Lilly and Co) nullMOUNJARO 12.5mg/0.5mL Prefilled Pen Solution for Injection package photo

      Tirzepatide Solution for injection

      MOUNJARO 15mg/0.5mL Prefilled Pen Solution for Injection (00002-1457) (Eli Lilly and Co) nullMOUNJARO 15mg/0.5mL Prefilled Pen Solution for Injection package photo

      Tirzepatide Solution for injection [Weight Management]

      Zepbound 2.5mg/0.5mL Pre-Filled Pen Solution for Injection (00002-2506) (Eli Lilly and Co) nullZepbound 2.5mg/0.5mL Pre-Filled Pen Solution for Injection package photo

      Tirzepatide Solution for injection [Weight Management]

      Zepbound 2.5mg/0.5mL Solution for Injection (00002-0152) (Eli Lilly and Co) null

      Tirzepatide Solution for injection [Weight Management]

      Zepbound 5mg/0.5mL Pre-Filled Pen Solution for Injection (00002-2495) (Eli Lilly and Co) nullZepbound 5mg/0.5mL Pre-Filled Pen Solution for Injection package photo

      Tirzepatide Solution for injection [Weight Management]

      Zepbound 5mg/0.5mL Solution for Injection (00002-0243) (Eli Lilly and Co) null

      Tirzepatide Solution for injection [Weight Management]

      Zepbound 7.5mg/0.5mL Pre-Filled Pen Solution for Injection (00002-2484) (Eli Lilly and Co) nullZepbound 7.5mg/0.5mL Pre-Filled Pen Solution for Injection package photo

      Tirzepatide Solution for injection [Weight Management]

      Zepbound 10mg/0.5mL Pre-Filled Pen Solution for Injection (00002-2471) (Eli Lilly and Co) nullZepbound 10mg/0.5mL Pre-Filled Pen Solution for Injection package photo

      Tirzepatide Solution for injection [Weight Management]

      Zepbound 12.5mg/0.5mL Pre-Filled Pen Solution for Injection (00002-2460) (Eli Lilly and Co) nullZepbound 12.5mg/0.5mL Pre-Filled Pen Solution for Injection package photo

      Tirzepatide Solution for injection [Weight Management]

      Zepbound 15mg/0.5mL Pre-Filled Pen Solution for Injection (00002-2457) (Eli Lilly and Co) nullZepbound 15mg/0.5mL Pre-Filled Pen Solution for Injection package photo

      Description/Classification

      Description

      Tirzepatide is a subcutaneously administered, once-weekly, dual glucose-dependent insulinotropic polypeptide (GIP) receptor and glucagon-like peptide-1 (GLP-1) receptor agonist. Tirzepatide subcutaneous injection (Mounjaro) is indicated as an adjunct to diet and exercise to improve glycemic control in adults with type 2 diabetes mellitus (T2DM).[67631] Adults with T2DM in the SURPASS trials achieved average A1C reductions between 1.8% and 2.1% for tirzepatide 5 mg and between 1.7% and 2.4% for both tirzepatide 10 mg and tirzepatide 15 mg. Patients given the maximum recommended dose of 15 mg lowered their A1C by 0.5% more than semaglutide 1 mg, 0.9% more than insulin degludec, and 1% more than insulin glargine (p less than 0.001 for all 3 comparisons).[67631] A separate product, tirzepatide subcutaneous injection (Zepbound), is indicated in combination with a reduced-calorie diet and increased physical activity to reduce excess body weight and maintain weight reduction long term in adults with obesity or adults with overweight in the presence of at least 1 weight-related comorbid condition.[69808] Approval for weight loss was supported by 2 randomized, double-blind, placebo-controlled trials of adults with obesity or who were overweight with at least 1 weight-related condition. These studies measured weight reduction after 72 weeks of treatment (at least 52 weeks at maintenance dose) of 2,519 patients who received either 5 mg, 10 mg or 15 mg of tirzepatide once weekly and a total of 958 patients who received once-weekly placebo injections. In both trials, after 72 weeks of treatment, patients who received tirzepatide at all 3 dose levels experienced a statistically significant reduction in body weight compared to those who received placebo, and greater proportions of patients who received tirzepatide achieved at least 5% weight reduction compared to placebo. In study 1, patients without diabetes who were obese (BMI 30 kg/m2 or greater) or overweight (BMI 27 to less than 30 kg/m2) with at least 1 weight-related comorbid condition had an average body weight of 231 pounds (105 kg) and average BMI of 38 kg/m2 at the start of the trial; those randomized to receive tirzepatide 15 mg once weekly lost on average 18% of their body weight compared to those randomized to placebo. In study 2, patients with BMI 27 kg/m2 or greater and T2DM had an average body weight of 222 pounds (101 kg) and an average BMI of 36 kg/m2; those randomized to receive tirzepatide 15 mg once weekly lost on average 12% of their body weight compared to those randomized to placebo.[69808] First-line T2DM therapy depends on comorbidities, patient-centered treatment factors, and management needs. In adults with T2DM and established atherosclerotic cardiovascular disease (ASCVD) or indicators of high ASCVD risk, a glucagon-like peptide-1 receptor agonist (GLP-1 RA) with proven cardiovascular (CV) benefit (e.g., liraglutide, semaglutide, or dulaglutide) should be initiated as a first-line therapy independent of A1C goal or other antihyperglycemic treatments, including metformin. Alternatively, a sodium-glucose co-transporter 2 inhibitor (SGLT2 inhibitor) with proven CV benefit (e.g., canagliflozin, empagliflozin), may be used to reduce the risk of major cardiovascular events (MACE) or CV death in persons with T2DM and established ASCVD. GLP-1 RAs improve CV outcomes, as well as secondary outcomes such as progression of renal disease, in patients with established CV disease or chronic kidney disease (CKD); these factors make GLP-1 RA therapy an alternative initial treatment option, with or without metformin based on glycemic needs, in T2DM patients with indicators of high-risk or established heart failure (HF) or CKD who cannot tolerate an SGLT2 inhibitor. In patients with T2DM who do not have ASCVD/indicators of high-risk, HF, or CKD and who need to minimize hypoglycemia and/or promote weight loss, GLP-1 RAs, including dual glucose-dependent insulinotropic polypeptide (GIP)/ GLP-1 agonists like tirzepatide are generally recommended as a second-line option as add-on to metformin therapy. GLP-1 RAs and dual GIP/ GLP-1 agonists have high glucose-lowering efficacy; evidence suggests that the glucose-lowering effect may be greatest for tirzepatide, followed by semaglutide once weekly, dulaglutide and liraglutide, closely followed by exenatide once weekly, and then exenatide twice daily and lixisenatide. Semaglutide and tirzepatide produce the most weight loss, followed by dulaglutide and liraglutide, and then exenatide and lixisenatide. For patients requiring an injectable medication, GLP-1 RAs and dual GIP/ GLP-1 agonists are preferred to insulin due to similar or even better efficacy in A1C reduction, lower risk of hypoglycemia, and reductions in body weight.[50321][64926][60608] Tirzepatide was initially FDA approved in 2022.[67631][69808]

      Classifications

      • Alimentary Tract and Metabolism
        • Agents for Obesity
          • Dual GIP and GLP-1 Receptor Agonist for Obesity
        • Antidiabetic Agents
          • Blood Glucose Lowering Agents, excluding Insulins
            • Incretin mimetics Antidiabetics
              • Dual GIP and GLP-1 Receptor Agonists
      • Compounding Agents and Supplies
        • Bulk Agents for Compounding
      Revision Date: 11/18/2024, 10:01:50 PM

      References

      50321 - Davies MJ, Aroda VR, Collins BS, et al. Management of hyperglycemia in Type 2 Diabetes, 2022. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 2022;11:2753-2786.60608 - Samson SL, Vellanki P, Blonde L, et al. Consensus Statement by The American Association of Clinical Endocrinologists and American College of Endocrinology on the Comprehensive Type 2 Diabetes Management Algorithm 2023 Update. Endocrine Pract 2023;29:305-340.64926 - American Diabetes Association. Standards of Medical Care in Diabetes - 2024. Diabetes Care. 2024; 47(Suppl 1):S1-S321. Available at: https://diabetesjournals.org/care/issue/47/Supplement_167631 - Mounjaro (tirzepatide) injection package insert. Indianapolis, IN: Eli Lilly and Company; 2024 Nov.69808 - Zepbound (tirzepatide) injection package insert. Indianapolis, IN: Eli Lilly and Company; 2024 Nov.

      Administration Information

      General Administration Information

      For storage information, see the specific product information within the How Supplied section.

      Route-Specific Administration

      Injectable Administration

      • Administer by subcutaneous injection only. Do not administer by intravenous or intramuscular injection.
      • Visually inspect for particulate matter and discoloration prior to administration whenever solution and container permit.[67631]
      • Injection pens should never be shared among patients. Even if the disposable needle is changed, sharing may result in transmission of hepatitis viruses, HIV, or other blood-borne pathogens. Do not share pens among multiple patients in an inpatient setting; reserve the use of any pen to 1 patient only.[54923][58866]

      Subcutaneous Administration

      Mounjaro

      General information

      • Mounjaro is available in pre-filled disposable, single-dose pens and vials (2.5 mg, 5 mg, 7.5 mg, 10 mg, 12.5 mg, and 15 mg strengths). Ensure the correct dose of the pen or vial is chosen for the dose to be administered.
      • Never mix tirzepatide with other medications or inject in the same injection site as other medications. When used concomitantly with insulin therapy, the 2 injections may be injected in the same body region, but the injections should not be adjacent to each other.
      • Instruct patients/caregivers on proper injection technique. Adequate oral and written instructions on the use should be supplied before a patient or caregiver administers a dose. Instruct patients using the single-dose vials to use a syringe appropriate for dose administration (e.g., a 1 mL syringe capable of measuring a 0.5 mL dose). Patients/caregivers should review the "Instructions for Use" in their package. People who are blind or have vision problems should not use the pen without help from a person trained to use the pen.
      • Administer every 7 days (once weekly) on the same day each week; the dose can be administered at any time of day, with or without meals.
      • Missed dose: If a dose is missed, give as soon as possible within 4 days (96 hours) after the missed dose. If more than 4 days have passed, skip the missed dose and administer on the next scheduled day. The day of weekly administration can be changed if needed, as long as the time between 2 doses is at least 3 days (72 hours).[67631]

       

      Subcutaneous Pen Administration (Mounjaro Pen)

      • Wash and dry hands before use.
      • The dose of tirzepatide is already set on the pen; each pen is for one-time use only.
      • Ensure that the pen is locked; once ready to inject, pull the gray base cap straight off and throw it away in the trash. Do not put the gray base cap back on. Do not touch the needle.
      • Place the clear base flat against the skin at the injection site. Unlock by turning the lock ring.
      • Inject subcutaneously into the thigh, abdomen, or upper arm by pressing and holding the purple injection button for up to 10 seconds. Listen for the first click which indicates the injection has started, and then the second click which indicates the injection has completed. You will know the injection is complete when the gray plunger is visible.
      • Dispose of the used pen in an appropriate sharps container after each injection.
      • Rotate administration sites with each injection to prevent lipodystrophy; do not inject into areas of lipodystrophy or localized cutaneous amyloidosis. Do not inject where the skin is tender, bruised, scaly or hard, or into scars or damaged skin.[67631]

       

      Mounjaro Vial

      • Wash and dry hands before use.
      • Pull off the protective cap from the vial and wipe the rubber stopper with an alcohol swab.
      • Remove the outer wrapping from the syringe and needle and attach the needle to the syringe.
      • Add 0.5 mL of air to the syringe, insert the needle into the vial, and then push the plunger all the way down.
      • Withdraw 0.5 mL of solution making sure to eliminate any air bubbles in the syringe.
      • Inject subcutaneously into the thigh, abdomen, or upper arm.
      • Rotate administration sites with each injection to prevent lipodystrophy; do not inject into areas of lipodystrophy or localized cutaneous amyloidosis. Do not inject where the skin is tender, bruised, scaly or hard, or into scars or damaged skin.
      • Dispose of the used needle and syringe in an appropriate sharps container after each injection.[67631]

       

      Zepbound

      General information

      • Zepbound Pen is available in 6 pre-filled, disposable, single-dose pens and vials (2.5 mg, 5 mg, 7.5 mg, 10 mg, 12.5 mg, and 15 mg strengths). Ensure the correct dose of the pen or vial is chosen for the dose to be administered.
      • Never mix tirzepatide with other medications or inject in the same injection site as other medications.
      • Instruct patients/caregivers on proper injection technique. Adequate oral and written instructions on the use should be supplied before a patient or caregiver administers a dose. Instruct patients using the single-dose vials to use a syringe appropriate for dose administration (e.g., a 1 mL syringe capable of measuring a 0.5 mL dose). Patients/caregivers should review the "Instructions for Use" in their package. People who are blind or have vision problems should not use the pen without help from a person trained to use the pen.
      • Administer once every 7 days (once weekly) on the same day each week; the dose can be administered at any time of day, with or without meals.
      • Missed dose: If 1 dose is missed, instruct patients to administer tirzepatide as soon as possible within 4 days (96 hours) after the missed dose. If more than 4 days have passed, skip the missed dose and administer the next dose on the regularly scheduled day. In each case, patients can then resume their regular once weekly dosing schedule. The day of weekly administration can be changed, if necessary, as long as the time between the two doses is at least 3 days (72 hours).[67631]

       

      Subcutaneous Pen Administration (Zepbound Pen)

      • Remove the pen from the refrigerator.
      • Wash and dry hands before use.
      • The dose of tirzepatide is already set on the pen; each pen is for one-time use only.
      • Ensure that the pen is locked; once ready to inject, pull the gray base cap straight off and throw it away in the trash. Do not put the gray base cap back on. Do not touch the needle.
      • Place the clear base flat against the skin at the injection site. Unlock by turning the lock ring.
      • Inject subcutaneously into the thigh, abdomen, or upper arm by pressing and holding the purple injection button for up to 10 seconds. Listen for the first click which indicates the injection has started, and then the second click which indicates the injection has completed. You will know the injection is complete when the gray plunger is visible.
      • Dispose of the used pen in an appropriate sharps container after each injection.
      • Rotate administration sites with each injection to prevent lipodystrophy; do not inject into areas of lipodystrophy or localized cutaneous amyloidosis. Do not inject where the skin is tender, bruised, scaly or hard, or into scars or damaged skin.[69808]

      Zepbound Vial

      • Wash and dry hands before use.
      • Pull off the protective cap from the vial and wipe the rubber stopper with an alcohol swab.
      • Remove the outer wrapping from the syringe and needle and attach the needle to the syringe.
      • Add 0.5 mL of air to the syringe, insert the needle into the vial, and then push the plunger all the way down.
      • Withdraw 0.5 mL of solution making sure to eliminate any air bubbles in the syringe.
      • Inject subcutaneously into the thigh, abdomen, or back of the upper arm.
      • Do not inject with other medications or in the same injection site used for other medications.
      • Rotate administration sites with each injection to prevent lipodystrophy; do not inject into areas of lipodystrophy or localized cutaneous amyloidosis. Do not inject where the skin is tender, bruised, scaly or hard, or into scars or damaged skin.
      • Dispose of the used needle and syringe in an appropriate sharps container after each injection.[69808]

      Clinical Pharmaceutics Information

      From Trissel's 2‚Ñ¢ Clinical Pharmaceutics Database
        Revision Date: 11/18/2024, 10:01:50 PM

        References

        54923 - Institute for Safe Medication Practices. Ongoing concern about insulin pen reuse shows hospitals need to consider transitioning away from the pen. ISMP Medication Safety Alert. Retrieved from the World Wide Web June 4, 2013. http://www.ismp.org/newsletters/acutecare/showarticle.asp?id=41.58866 - Food and Drug Administration Drug Safety Communication: FDA requires label warnings to prohibit sharing of multi-dose diabetes pen devices among patients. Retrieved February 26, 2015. Available on the World Wide Web at: http://fda.gov/Drugs/DrugSafety/ucm43571.htm.67631 - Mounjaro (tirzepatide) injection package insert. Indianapolis, IN: Eli Lilly and Company; 2024 Nov.69808 - Zepbound (tirzepatide) injection package insert. Indianapolis, IN: Eli Lilly and Company; 2024 Nov.

        Adverse Reactions

        Mild

        • abdominal pain
        • alopecia
        • anorexia
        • asthenia
        • diarrhea
        • dizziness
        • dysesthesia
        • dysgeusia
        • dyspepsia
        • eructation
        • fatigue
        • flatulence
        • gastroesophageal reflux
        • injection site reaction
        • lethargy
        • malaise
        • nausea
        • pruritus
        • rash
        • urticaria
        • vomiting
        • weight loss
        • xerostomia

        Moderate

        • antibody formation
        • atopic dermatitis
        • cholelithiasis
        • constipation
        • dehydration
        • depression
        • hyperamylasemia
        • hypoglycemia
        • hypotension
        • orthostatic hypotension
        • sinus tachycardia

        Severe

        • anaphylactoid reactions
        • angioedema
        • cholecystitis
        • ileus
        • new primary malignancy
        • pancreatitis
        • perioperative pulmonary aspiration
        • renal failure (unspecified)
        • retinopathy
        • suicidal ideation

        When tirzepatide was used as monotherapy for diabetes, none of the patients in the trials reported hypoglycemia (blood glucose less than 54 mg/dL) or severe hypoglycemia. When tirzepatide was added to basal insulin with or without metformin, hypoglycemia occurred in 16%, 19%, and 14%, and severe hypoglycemia occurred in 0%, 2%, and 1% of patients treated with tirzepatide 5 mg, 10 mg, and 15 mg, respectively. Hypoglycemia was more frequent when tirzepatide was used in combination with a sulfonylurea. In a clinical trial up to 104 weeks of treatment, when administered with a sulfonylurea, hypoglycemia occurred in 13.8%, 9.9%, and 12.8%, and severe hypoglycemia occurred in 0.5%, 0%, and 0.6% of patients treated with tirzepatide 5 mg, 10 mg, and 15 mg, respectively.[67631] In clinical trials of tirzepatide for weight management, patients with type 2 diabetes mellitus (T2DM) and a BMI of 27 kg/m2 or greater, hypoglycemia (plasma glucose less than 54 mg/dL) was reported in 4.2% of tirzepatide-treated patients versus 1.3% of placebo-treated patients. In a trial of tirzepatide in adults with obesity/overweight without T2DM, there was no systematic capturing of hypoglycemia, but plasma glucose less than 54 mg/dL was reported in 0.3% of tirzepatide-treated patients versus no placebo-treated patients.[69808]

        Gastrointestinal (GI) side effects are among the most common adverse events associated with tirzepatide and are sometimes severe. In the pool of placebo-controlled trials of tirzepatide for diabetes, GI adverse reactions occurred more frequently among patients receiving tirzepatide than placebo (placebo 20.4%, tirzepatide 5 mg 37.1%, tirzepatide 10 mg 39.6%, tirzepatide 15 mg 43.6%). More patients receiving tirzepatide 5 mg (3%), tirzepatide 10 mg (5.4%), and tirzepatide 15 mg (6.6%) discontinued treatment due to GI events than patients receiving placebo (0.4%). The following GI side effects were reported in 5% or more of patients receiving tirzepatide for diabetes treatment: anorexia (5% to 11%), nausea (12% to 18%), diarrhea (12% to 17%), vomiting (5% to 9%), constipation (6% to 7%), dyspepsia (5% to 8%), and abdominal pain (5% to 6%). In patients with renal disease, diarrhea, nausea, and vomiting may cause dehydration; severe dehydration could cause acute kidney injury. Tirzepatide therapy commonly resulted in significant weight loss; patients treated with tirzepatide for diabetes lost between 12 pounds (5 mg) and 25 pounds (15 mg) on average. Ileus has been reported with tirzepatide in postmarketing surveillance.[67631] In clinical trials of tirzepatide for weight management, GI adverse reactions occurred more frequently among patients receiving tirzepatide than placebo. More patients receiving tirzepatide discontinued treatment due to GI adverse reactions than patients receiving placebo. Nausea (25% to 29%), vomiting (8% to 13%), and diarrhea (19% to 23%) occurred during dose escalation and decreased over time. Constipation (11% to 17%), abdominal pain (9% to 10%), dyspepsia (9% to 10%), gastroesophageal reflux disease (4% to 5%), flatulence (3% to 4%), eructation (4% to 5%), and abdominal distention (3% to 4%) were reported in patients receiving tirzepatide for weight management. Dysgeusia was reported in 0.4% of tirzepatide patients compared to none in placebo-treated patients. Xerostomia or dry throat was reported in 1% of tirzepatide patients compared to 0.1% of placebo patients.[69808]

        Acute gallbladder disease has been reported during clinical trials with GLP-1 receptor agonists. In tirzepatide placebo-controlled clinical trials for diabetes, acute gallbladder disease (cholelithiasis, biliary colic, cholecystitis, and cholecystectomy) was reported by 0.6% of patients treated with tirzepatide patients and 0% of placebo-treated patients. In clinical trials of tirzepatide for weight management, cholelithiasis (1.1%), cholecystitis (0.7%), and cholecystectomy (0.2%) were reported in tirzepatide-treated patients. If cholelithiasis is suspected, gallbladder studies and appropriate clinical follow-up are indicated.[67631] [69808]

        Acute pancreatitis, including fatal and non-fatal hemorrhagic or necrotizing pancreatitis, has been observed in patients treated with GLP-1 receptor agonists. In clinical studies, 14 events of acute pancreatitis were confirmed by adjudication in 13 patients treated with tirzepatide (0.23 patients per 100 years of exposure) versus 3 events in 3 comparator-treated patients (0.11 patients per 100 years of exposure).[67631] In the pool of placebo-controlled clinical trials, treatment with tirzepatide resulted in hyperamylasemia, with mean increases from baseline in serum pancreatic amylase concentrations of 33% to 38% and serum lipase concentrations of 31% to 42%. Placebo treated patients had a mean increase from baseline in pancreatic amylase of 4% and no changes were observed in lipase. The clinical significance of elevations in lipase or amylase with tirzepatide is unknown in the absence of other signs and symptoms of pancreatitis.[67631] Treatment with tirzepatide for weight management resulted in mean increases from baseline in serum pancreatic amylase concentrations of 20% to 25% and serum lipase concentrations of 28% to 35%, compared to mean increases from baseline in pancreatic amylase of 2.1% and serum lipase of 5.8% in placebo-treated patients. The clinical significance of elevations in amylase or lipase with tirzepatide is unknown in the absence of other signs and symptoms of pancreatitis.[69808] Patients should be instructed to seek prompt medical attention if they experience unexplained persistent severe abdominal pain, which may or may not be accompanied by vomiting. If pancreatitis is suspected, tirzepatide should be discontinued. If pancreatitis is confirmed, tirzepatide should not be restarted unless an alternative etiology is identified.[67631] [69808]

        Hypersensitivity reactions (e.g., rash, urticaria, pruritus, and eczema/atopic dermatitis) have been reported with tirzepatide in clinical trials and were sometimes severe. Hypersensitivity reactions were reported in 3.2% of patients treated with tirzepatide for diabetes and 5% of patients receiving tirzepatide for weight management. Serious hypersensitivity reactions, including anaphylaxis, anaphylactoid reactions, and angioedema, have been reported in patients treated with tirzepatide in postmarketing surveillance. In clinical trials of tirzepatide for weight management, immediate hypersensitivity reactions (within 1 day after drug administration) occurred in 2.1% of patients receiving tirzepatide compared to 0.4% of patients receiving placebo, while non-immediate hypersensitivity reactions occurred in 3.5% of patients receiving tirzepatide compared to 2.7% of patients receiving placebo. It is unknown whether patients with a history of anaphylactoid reactions or angioedema with another GLP-1 receptor agonist will be predisposed to anaphylaxis with tirzepatide.[67631] [69808]

        In the pool of placebo-controlled trials of tirzepatide for diabetes, injection site reactions were reported in 3.2% of patients treated with tirzepatide compared to 0.4% of placebo-treated patients. In the pool of 7 clinical trials, injection site reactions occurred in 119/2,570 (4.6%) of tirzepatide-treated patients with anti-tirzepatide antibodies and in 18/2,455 (0.7%) of tirzepatide-treated patients who did not develop anti-tirzepatide antibodies.[67631] In clinical trials of tirzepatide for weight management, injection site reactions, including localized bruising (ecchymosis), erythema, pruritus, pain, and rash were reported in 6% to 8% of patients. Injection site reactions occurred more frequent in those with anti-tirzepatide antibodies (11.3%) compared to patients who did not develop anti-tirzepatide antibodies.[69808]

        Tirzepatide, like other GLP-1 receptor agonists, may be associated with acute kidney injury. In clinical trials of tirzepatide for weight management, acute kidney injury was reported in 0.5% of tirzepatide-treated patients and 0.2% of patients receiving placebo. There are postmarketing reports of acute kidney injury in patients treated with GLP-1 receptor agonists. Some of these events have been reported in patients without known underlying renal disease. A majority of the reported events occurred in patients who had experienced nausea, vomiting, diarrhea, or dehydration. The reports have included increased serum creatinine, renal impairment, worsened chronic renal failure, and acute renal failure (unspecified), sometimes requiring hemodialysis. Some of these events occurred in patients receiving one or more pharmacologic agents known to affect renal function or hydration status, such as angiotensin converting enzyme inhibitors (ACE inhibitors), nonsteroidal anti-inflammatory drugs (NSAIDs), or diuretics. Altered renal function was reversible in many cases with supportive treatment and discontinuation of potentially causative agents. Advise patients of the potential risks of dehydration due to GI adverse reactions and to take precautions to avoid fluid depletion while taking tirzepatide. Monitor renal function when initiating or escalating doses of tirzepatide in patients with renal impairment who report severe gastrointestinal adverse reactions. Tirzepatide has not been found to be directly nephrotoxic in preclinical or clinical studies.[67631] [69808]

        In the pool of placebo-controlled trials of tirzepatide for diabetes, treatment with tirzepatide resulted in a mean increase in heart rate of 2 to 4 beats per minute compared to a mean increase of 1 beat per minute in placebo-treated patients. Episodes of sinus tachycardia, associated with a concomitant increase from baseline in heart rate of 15 or more beats per minute, also were reported in 4.3% to 7%, 4.6% to 7.1%, 5.9% to 9.3% and 10% to 23% of subjects treated with placebo, tirzepatide 5 mg, 10 mg, and 15 mg, respectively. The clinical relevance of heart rate increases is uncertain.[67631] In clinical trials of tirzepatide for weight management, hypotension (including orthostatic hypotension) occurred more frequently among patients receiving tirzepatide (1% to 2%) than patients receiving placebo (0.1%). Hypotension was more frequently seen in tirzepatide-treated patients on concomitant antihypertensive therapy (2.2%) compared to tirzepatide-treated patients not on antihypertensive therapy (1.2%). Hypotension also occurred in association with gastrointestinal adverse events and dehydration. Treatment with tirzepatide for weight management resulted in a mean increase in heart rate of 1 to 3 beats per minute compared to no increase in placebo-treated patients.[69808]

        In clinical trials of tirzepatide for weight management, general symptoms of fatigue (including asthenia, lethargy, and malaise) were reported in 5% to 7% of tirzepatide-treated patients. Dizziness was reported in 4% to 5% of patients receiving tirzepatide. Dysesthesia occurred in 0.2% of patients treated with tirzepatide 5 mg and 10 mg, and 0.4% of patients treated with tirzepatide 15 mg, compared to 0.1% of placebo-treated patients in clinical trials for weight management.[69808]

        In clinical trials of tirzepatide for weight management, hair loss (alopecia) adverse reactions were associated with weight reduction. In clinical trials, hair loss was reported at higher incidences than with placebo and in 4% to 5% of tirzepatide-treated patients, and more frequently in female than male patients in the tirzepatide (7.1% female versus 0.5% male). No tirzepatide-treated patients discontinued study treatment due to hair loss.[69808]

        Anti-tirzepatide antibody formation is possible during treatment with tirzepatide. During the 40- to 104-week treatment periods with anti-drug antibody (ADA) sampling conducted up to 44 to 108 weeks in 7 clinical trials for diabetes, 51% (2,570/5,025) of tirzepatide-treated patients developed anti-tirzepatide antibodies. In these trials, anti-tirzepatide antibody formation in 34% and 14% of patients treated with tirzepatide showed cross-reactivity to native GIP or native GLP-1, respectively. Of the 2,570 tirzepatide-treated patients who developed anti-tirzepatide antibodies during the treatment periods in these 7 trials, 2% and 2% developed neutralizing antibodies against tirzepatide activity on the GIP or GLP-1 receptors, respectively, and 0.9% and 0.4% developed neutralizing antibodies against native GIP or GLP-1, respectively.[67631] During the 72-week treatment period with ADA sampling in the weight management studies, 64.5% (1591/2467) of tirzepatide-treated patients developed anti-tirzepatide antibodies. In these trials, anti-tirzepatide antibody formation in 40% and 16.5% of tirzepatide-treated patients showed cross-reactivity to native GIP or native GLP-1, respectively. Of the tirzepatide-treated patients, 2.8% and 2.7% developed neutralizing antibodies against tirzepatide activity on the GIP or GLP-1 receptors, respectively, and 0.8% and 0.1% developed neutralizing antibodies against native GIP or GLP-1, respectively.[69808] There was no identified clinically significant effect of anti-tirzepatide antibodies on pharmacokinetics or effectiveness of tirzepatide. More tirzepatide-treated patients who developed anti-tirzepatide antibodies experienced hypersensitivity reactions or injection site reactions than those who did not develop these antibodies.[67631] [69808]

        Rapid improvement in glucose control has been associated with a temporary worsening of diabetic retinopathy. Retinopathy complications have been reported with other GLP-1 receptor agonists. Monitor for visual changes in patients with a history of diabetic retinopathy. Inform patients to contact their prescriber if changes in vision are experienced during treatment with tirzepatide.[67631] [69808]

        Tirzepatide may be associated with the development of a new primary malignancy. Tirzepatide has been shown to cause dose-dependent and treatment duration-dependent increase in the incidence of thyroid C-cell tumors (adenomas and carcinomas) in a 2-year study at clinically relevant exposures in both genders of rats. A statistically significant increase in thyroid C-cell adenomas was observed in males (0.5 mg/kg or greater) and females (0.15 mg/kg or greater), and a statistically significant increase in thyroid C-cell adenomas and carcinomas combined was observed in males and females at all doses examined. The potential of tirzepatide to induce C-cell tumors in mice has not been evaluated. It is unknown whether tirzepatide causes thyroid C-cell tumors, including medullary thyroid carcinoma (MTC), in humans. It is not known whether monitoring serum calcitonin or performing thyroid ultrasounds will diminish human risk of thyroid C-cell tumors. Patients should be counseled on the risk and symptoms of thyroid tumors (e.g. a mass in the neck, dysphagia, dyspnea or persistent hoarseness). Although routine monitoring of serum calcitonin is of uncertain value in patients treated with tirzepatide, if serum calcitonin is measured and found to be elevated, the patient should be referred to an endocrinologist for further evaluation.[67631] [69808]

        Suicidal behavior and suicidal ideation have been reported in clinical trials with other incretin mimetics indicated for weight management. Monitor patients for the emergence or worsening of depression, suicidal thoughts or behavior, and any unusual changes in moods or behaviors. Discontinue tirzepatide in patients who develop suicidal thoughts or behaviors.[69808] In January 2024, the FDA announced that they have not found evidence that use of GLP-1 RAs for type 2 diabetes or weight management causes suicidal thoughts or actions. During their preliminary evaluation, they conducted detailed reviews of reports of suicidal thoughts or actions received in the FDA Adverse Event Reporting System (FAERS) and reviews of clinical trials, including large outcome studies and observational studies. However, because of the small number of suicidal thoughts or actions observed in both people using GLP-1 RAs and in the comparative control groups, they cannot definitively rule out that a small risk may exist; therefore, FDA is continuing to look into this issue. Further evaluations include a meta-analysis of clinical trials across all GLP-1 RA products and an analysis of postmarketing data in the Sentinel System; final conclusions and recommendations will be communicated once more information is known.[70130]

        There have been postmarketing reports of perioperative pulmonary aspiration in patients receiving GLP-1 receptor agonists who underwent elective surgery or procedures requiring general anesthesia or deep sedation. Despite adherence to preoperative fasting guidelines, these patients were found to have residual gastric contents. The available data is insufficient to give recommendations on mitigating the risk of pulmonary aspiration during general anesthesia or deep sedation in patients taking tirzepatide, including whether to modify preoperative fasting recommendations or temporarily discontinue tirzepatide.[69808]

        Revision Date: 11/18/2024, 10:01:50 PM

        References

        67631 - Mounjaro (tirzepatide) injection package insert. Indianapolis, IN: Eli Lilly and Company; 2024 Nov.69808 - Zepbound (tirzepatide) injection package insert. Indianapolis, IN: Eli Lilly and Company; 2024 Nov.70130 - US Food and Drug Administration (FDA). FDA Medwatch - Certain Type of Medicines Approved for Type 2 Diabetes and Obesity: Drug Safety Communication - Update on FDA’s Ongoing Evaluation of Reports of Suicidal Thoughts or Actions. Retrieved January 11, 2024. Available on the World Wide Web at: https://www.fda.gov/drugs/drug-safety-and-availability/update-fdas-ongoing-evaluation-reports-suicidal-thoughts-or-actions-patients-taking-certain-type.

        Contraindications/Precautions

        Absolute contraindications are italicized.

        • medullary thyroid carcinoma
        • multiple endocrine neoplasia syndrome type 2
        • thyroid C-cell tumors
        • angioedema
        • breast-feeding
        • burns
        • cholelithiasis
        • contraception requirements
        • Crohn disease
        • depression
        • diabetic retinopathy
        • fever
        • gallbladder disease
        • gastroparesis
        • geriatric
        • GI disease
        • history of angioedema
        • hypoglycemia
        • infection
        • inflammatory bowel disease
        • pancreatitis
        • pregnancy
        • renal disease
        • renal failure
        • renal impairment
        • schizophrenia
        • suicidal ideation
        • surgery
        • thyroid cancer
        • thyroid disease
        • tobacco smoking
        • trauma
        • type 1 diabetes mellitus
        • ulcerative colitis

        Tirzepatide is contraindicated in patients with a personal or family history of certain types of thyroid cancer, specifically thyroid C-cell tumors such as medullary thyroid carcinoma (MTC), or in patients with multiple endocrine neoplasia syndrome type 2 (MEN 2). Tirzepatide has been shown to cause dose-dependent and treatment duration-dependent increase in the incidence of thyroid C-cell tumors (adenomas and carcinomas) in a 2-year study at clinically relevant exposures in both genders of rats. A statistically significant increase in thyroid C-cell adenomas was observed in males (0.5 mg/kg or greater) and females (0.15 mg/kg or greater), and a statistically significant increase in thyroid C-cell adenomas and carcinomas combined was observed in males and females at all doses examined. The potential of tirzepatide to induce C-cell tumors in mice has not been evaluated. It is unknown whether tirzepatide causes thyroid C-cell tumors, including medullary thyroid carcinoma (MTC), in humans. It is not known whether monitoring serum calcitonin or performing thyroid ultrasounds will diminish human risk of thyroid C-cell tumors. Patients should be counseled on the risk and symptoms of thyroid tumors (e.g. a mass in the neck, dysphagia, dyspnea or persistent hoarseness). Although routine monitoring of serum calcitonin is of uncertain value in patients treated with tirzepatide, if serum calcitonin is measured and found to be elevated, the patient should be referred to an endocrinologist for further evaluation.[67631] [69808]

        Tirzepatide is contraindicated in any patient who has exhibited tirzepatide hypersensitivity or hypersensitivity to any of its inactive ingredients. Serious hypersensitivity reactions, including anaphylaxis and angioedema, have been reported in patients treated with tirzepatide. It is unknown whether patients with a history of angioedema or anaphylaxis with another glucagon-like peptide-1 (GLP-1) receptor agonist will be predisposed to anaphylaxis with tirzepatide. Monitor these patients closely when starting tirzepatide. If hypersensitivity reactions occur, discontinue use of tirzepatide; treat promptly per standard of care, and monitor until signs and symptoms resolve.[67631] [69808]

        Tirzepatide is not indicated for use in patients with type 1 diabetes mellitus.[67631]

        Hypoglycemia should be monitored by the patient and clinician when tirzepatide treatment is initiated and continued for type 2 diabetes mellitus (T2DM) and when used for weight reduction and maintenance. The risk of hypoglycemia, including severe hypoglycemia, is increased when tirzepatide is used in combination with insulin secretagogues (e.g., sulfonylureas, "glinides") or with insulin. Although specific dose recommendations are not available for most agents, the clinician should consider a dose reduction of the insulin secretagogue or insulin when used in combination with tirzepatide.[67631] In a trial of tirzepatide in adults with obesity/overweight without type 2 diabetes mellitus, there was no systematic capturing of hypoglycemia, but plasma glucose less than 54 mg/dL was reported in 0.3% of tirzepatide-treated patients versus no placebo-treated patients.[69808] Adequate blood glucose monitoring should be continued and followed. Patient and family education regarding hypoglycemia management is crucial; the patient and patient's family should be instructed on how to recognize and manage the symptoms of hypoglycemia. Early warning signs of hypoglycemia may be less obvious in patients with hypoglycemia unawareness which can be due to a long history of diabetes (where deficiencies in the release or response to counter-regulatory hormones exist), with autonomic neuropathy, intensified diabetes control, or taking medications such as beta-blockers, guanethidine, or reserpine. Patients should be aware of the need to have a readily available source of glucose (dextrose, d-glucose) or another carbohydrate to treat hypoglycemic episodes. In severe hypoglycemia, intravenous dextrose or glucagon injections may be needed. Because hypoglycemic events may be difficult to recognize in some elderly patients, antidiabetic agent regimens should be carefully managed to prevent an increased risk of severe hypoglycemia. Severe or frequent hypoglycemia in a patient is an indication for the modification of treatment regimens, including setting higher glycemic goals.[64926]

        Tirzepatide has not been studied in patients with severe gastrointestinal (GI) disease, including gastroparesis. Because tirzepatide is commonly associated with GI adverse reactions, including slowed gastric emptying, nausea, vomiting, and diarrhea, the use of tirzepatide is not recommended in patients with severe GI disease (e.g., severe gastroparesis, inflammatory bowel disease such as Crohn disease or ulcerative colitis).[67631] [69808]

        Use caution when initiating or increasing doses of tirzepatide in patients with renal impairment; however, no dose adjustments are needed based on renal function. There have been postmarketing reports of acute kidney injury, and worsening of chronic renal failure, which sometimes has required hemodialysis, in patients treated with GLP-1 receptor agonists. Some of these events have been reported in patients without known underlying renal disease. In many of these cases, altered renal function has been reversed with supportive treatment and discontinuation of potentially causative agents. A majority of the reported events occurred in patients who had experienced nausea, vomiting, diarrhea, or dehydration. Monitor renal function when initiating or escalating doses of tirzepatide in patients reporting severe adverse gastrointestinal reactions.[67631] [69808]

        Acute pancreatitis, including fatal and non-fatal hemorrhagic or necrotizing pancreatitis, has been observed in patients treated with GLP-1 receptor agonists. In clinical studies, 14 events of acute pancreatitis were confirmed by adjudication in 13 patients treated with tirzepatide (0.23 patients per 100 years of exposure) versus 3 events in 3 comparator-treated patients (0.11 patients per 100 years of exposure). Tirzepatide has not been studied in patients with a prior history of pancreatitis. It is unknown if patients with a history of pancreatitis are at higher risk for development of pancreatitis on tirzepatide. After initiation of tirzepatide, and after dose increases, observe patients for signs and symptoms of pancreatitis (including persistent severe abdominal pain, sometimes radiating to the back, which may or may not be accompanied by vomiting). If pancreatitis is suspected, promptly discontinue tirzepatide and initiate appropriate management.[67631] [69808] In 2014, the FDA and EMA agencies stated that while they have not reached any new conclusions about safety risks of the incretin mimetics, the totality of the reviewed data (clinical and animal studies) provides reassurance that the data do not support an increased risk of pancreatitis or pancreatic cancer in patients receiving incretin mimetics. Continue to consider precautions related to pancreatic risk until more data are available.[53573] [56778]

        Use tirzepatide with caution in patients with a history of gallbladder disease. Acute events of gallbladder disease have been reported in GLP-1 receptor agonist trials. In tirzepatide placebo-controlled clinical trials for diabetes, acute gallbladder disease (cholelithiasis, colic, and cholecystectomy) was reported by 0.6% of patients treated with tirzepatide patients and 0% of placebo-treated patients. In clinical trials of tirzepatide for weight loss, cholelithiasis (1.1%), cholecystitis (0.7%), and cholecystectomy (0.2%) were reported in tirzepatide-treated patients. If cholelithiasis is suspected, gallbladder studies and appropriate clinical follow-up are indicated.[67631] [69808]

        Diabetic patients must follow a regular, prescribed diet and exercise schedule to avoid either hypo- or hyperglycemia. Fever, thyroid disease, infection, emesis, recent trauma or surgery, and certain medications can affect the response to antidiabetic agents. Diabetic patients should be given a 'sick-day' plan to take appropriate action with blood glucose monitoring when acute illness is present. Temporary use of insulin in place of oral antidiabetic agents may be necessary during periods of physiologic stress (e.g., burns, systemic infection, trauma, surgery, or fever).[64926]

        Tirzepatide should be used with caution in patients who will undergo elective surgery or procedures requiring general anesthesia or deep sedation. Tirzepatide delays gastric emptying. There have been postmarketing reports of pulmonary aspiration in patients receiving GLP-1 receptor agonists who underwent elective surgery or procedures requiring general anesthesia or deep sedation. Despite adherence to preoperative fasting guidelines, these patients were found to have residual gastric contents. The available data is insufficient to give recommendations on mitigating the risk of pulmonary aspiration during general anesthesia or deep sedation in patients taking tirzepatide, including whether to modify preoperative fasting recommendations or temporarily discontinue tirzepatide.[69808]

        Monitor for visual changes in patients with a history of diabetic retinopathy. Tirzepatide has not been studied in patients with non-proliferative diabetic retinopathy requiring acute therapy, proliferative diabetic retinopathy, or diabetic macular edema. Rapid improvement in glucose control has been associated with a temporary worsening of diabetic retinopathy. Inform patients to contact their prescriber if changes in vision are experienced during treatment.[67631] [69808]

        Tirzepatide (Zepbound) for the treatment of obesity or weight management should not be used during pregnancy because weight loss offers no potential benefit to a pregnant woman and may result in fetal harm due to the potential hazard of maternal weight loss to the fetus. There is a pregnancy exposure registry for women who are exposed to tirzepatide intended for weight management (Zepbound) during pregnancy. Contact Eli Lilly and Company at 1-800-LillyRx (1-800-545-5979) for more information.[69808] According to the American Association of Clinical Endocrinologists the and American College of Endocrinology (AACE/ACE) Obesity Clinical Practice Guidelines, weight loss medications must not be used during pregnancy; these guidelines recommend contraception requirements for patients of childbearing potential; those receiving tirzepatide for weight reduction should use adequate contraception and discontinue tirzepatide if pregnancy occurs.[62881] Counsel female patients about the potential risk to the fetus during pregnancy and regarding contraception requirements during tirzepatide treatment for any indication. Use of tirzepatide may reduce the efficacy of oral hormonal contraceptives due to delayed gastric emptying. This delay is largest after the first dose and diminishes over time. Advise patients using oral hormonal contraceptives to switch to a non-oral contraceptive method, or add a barrier method of contraception for 4 weeks after initiation and for 4 weeks after each dose escalation with tirzepatide.[67631] [69808] There are no adequate data or clinical studies of tirzepatide use for the treatment of type 2 diabetes mellitus (T2DM) in pregnant women to inform a drug-associated risk for adverse developmental outcomes; use in pregnancy only if the potential benefit justifies the potential risk to the fetus. In pregnant rats administered tirzepatide during organogenesis, fetal growth reductions and fetal abnormalities occurred at clinical exposure in maternal rats based on AUC. In rabbits administered tirzepatide during organogenesis, fetal growth reductions were observed at clinically relevant exposures based on AUC. These adverse embryo/fetal effects in animals coincided with pharmacological effects on maternal weight and food consumption.[67631] The American College of Obstetricians and Gynecologists (ACOG) and the American Diabetes Association (ADA) continue to recommend human insulin as the standard of care in women with diabetes or gestational diabetes mellitus (GDM) requiring medical therapy; insulin does not cross the placenta.[64926] [62358]

        Use tirzepatide with caution during breast-feeding. There is no information regarding the presence of tirzepatide in human milk, the effects of tirzepatide on the breastfed infant, or the effects of the drug on milk production.[67631] [69808] If tirzepatide for the management of type 2 diabetes mellitus (T2DM) is discontinued and blood glucose is not controlled on diet and exercise alone, the clinician may consider insulin therapy. Oral hypoglycemics may also be considered. Metformin monotherapy may be appropriate for some patients as available studies indicate low excretion in milk and that maternal use during breast-feeding is not expected to result in side effects to a healthy nursing infant. Some experts recommend using metformin with caution if the patient is breastfeeding a newborn or a premature neonate with reduced renal function.[31407] [31408] [31409] [32459] [70364] Because acarbose has limited systemic absorption, which results in minimal maternal plasma concentrations, clinically significant exposure via breast milk is not expected; therefore, this agent may be an alternative if postprandial glucose control is needed.[46303] Glyburide may be a suitable alternative since it was not detected in the breast milk of lactating women who received single and multiple doses of glyburide.[31568] If any oral hypoglycemics are used during breast-feeding, the nursing infant should be monitored for signs of hypoglycemia, such as increased fussiness or somnolence.[46104]

        During clinical trials the safety and efficacy of tirzepatide were not different in geriatric versus younger adult patients, but greater sensitivity of some older individuals cannot be ruled out.[67631] [69808] Geriatric adults with diabetes mellitus are especially at risk for hypoglycemic episodes, especially if other risk factors are present, such as intensive insulin therapy, use of an excessive insulin dose, improper timing of insulin with regard to meals, injection of the wrong type of insulin, decreased renal function, severe liver disease, alcohol ingestion, defective counter-regulatory hormone release, missing meals/fasting, or gastroparesis.[30444] Because hypoglycemic events may be difficult to recognize in some older adults, antidiabetic agent regimens should be carefully managed to obviate an increased risk of severe hypoglycemia. Severe or frequent hypoglycemia is an indication for the modification of treatment regimens, including setting higher glycemic goals.[64926]

        Monitor blood glucose for needed dosage adjustments with tirzepatide in diabetic patients whenever a change in either nicotine intake or tobacco smoking status occurs. Nicotine activates neuroendocrine pathways (e.g., increases in circulating cortisol and catecholamine levels) and may increase plasma glucose. Tobacco smoking is known to aggravate insulin resistance. The cessation of nicotine therapy or tobacco smoking may result in a decrease in blood glucose or an increase in absorption of subcutaneous absorption of injections.

        Suicidal behavior and ideation have been reported in clinical trials with other incretin mimetics indicated for weight management. Therefore, administer tirzepatide (a dual GIP/ GLP-1 agonist) with caution in patients with depression and avoid use in patients with a history of suicide attempts or active suicidal ideation; monitor patients for the emergence or worsening of depression, suicidal thoughts or behavior, and any unusual changes in moods or behaviors. Discontinue tirzepatide in patients who develop suicidal thoughts or behaviors.[67631] [69808] In January 2024, the FDA announced that they have not found evidence that use of GLP-1 RAs for type 2 diabetes or weight management causes suicidal thoughts or actions. During their preliminary evaluation, they conducted detailed reviews of reports of suicidal thoughts or actions received in the FDA Adverse Event Reporting System (FAERS) and reviews of clinical trials, including large outcome studies and observational studies. However, because of the small number of suicidal thoughts or actions observed in both people using GLP-1 RAs and in the comparative control groups, they cannot definitively rule out that a small risk may exist; therefore, FDA is continuing to look into this issue. Further evaluations include a meta-analysis of clinical trials across all GLP-1 RA products and an analysis of postmarketing data in the Sentinel System; final conclusions and recommendations will be communicated once more information is known.[70130] According to the American Association of Clinical Endocrinologists and American College of Endocrinology (AACE/ACE) Obesity Clinical Practice Guidelines, all patients undergoing weight loss therapy should be monitored for mood disorders, depression, and suicidal ideation. Caution is recommended in patients with a psychotic disorder (e.g., schizophrenia) due to insufficient data. Patients receiving an antipsychotic should be treated with structured lifestyle modifications to promote weight loss and weight gain prevention; these guidelines suggest that metformin may be beneficial for modest weight loss and metabolic improvements in patients receiving an antipsychotic.[62881]

        Revision Date: 11/18/2024, 10:01:50 PM

        References

        30444 - Chelliah A, Burge MR. Hypoglycemia in elderly patients with diabetes mellitus: causes and strategies for prevention. Drugs Aging 2001;21:511-30.31407 - Hale TW, Kristensen JH, Hackett LP, et al. Transfer of metformin into human milk. Diabetologia 2002;45:1509-14.31408 - Gardiner SJ, Kirkpatrick CMJ, Begg EJ, et al. Transfer of metformin into human milk. Clin Pharmacol Ther 2003;73:71-7.31409 - Briggs GG, Ambrose PJ, Nageotte MP, et al. Excretion of metformin into breast milk and the effect on nursing infants. Obstet Gynecol 2005;105:1437-41.31568 - Feig DS, Donat DJ, Briggs GG, et al. Transfer of glyburide and glipizide into breast milk. Diabetes Care 2005;28:1851-5.32459 - Glueck CJ, Salehi M, Sieve L, et al. Growth, motor, and social development in breast- and formula- fed infants of metformin-treated women with polycystic ovary syndrome. J Pediatr 2006;148:628-32.46104 - Spencer JP, Gonzalez LS, Barnhart DJ. Medications in the breast-feeding mother. Am Fam Physician 2001; 64:119-126.46303 - Everett J. Use of oral antidiabetic agents during breastfeeding. J Hum Lact 1997;13:319-21.53573 - Food and Drug Administration (US FDA) Drug Medwatch-FDA investigating reports of possible increased risk of pancreatitis and pre-cancerous findings of the pancreas from incretin mimetic drugs for type 2 diabetes. Retrieved Mar. 14, 2013. Available on the World Wide Web at http://www.fda.gov/Drugs/DrugSafety/ucm343187.htm.56778 - Egan AG, Blind E, Dunder K, , et al. Pancreatic safety of incretin-based drugs-FDA and EMA assessment. N Engl J Med 2014;370:794—7.62358 - American College of Obstetricians and Gynecologists (ACOG) Committee on Practice Bulletins-Obstetrics. Practice Bulletin No. 190: Gestational Diabetes Mellitus. Obstet Gynecol. 2018;131:e49-e64. Reaffirmed 2019.62881 - Garvey WT, Mechanick JI, Brett EM, et al; Reviewers of the AACE/ACE Obesity Clinical Practice Guidelines. American Association of Clinical Endocrinologists and American College of Endocrinology comprehensive clinical practice guidelines for medical care of patients with obesity. Endocr Pract. 2016 Jul;22 Suppl 3:1-203. Epub 2016 May 24.64926 - American Diabetes Association. Standards of Medical Care in Diabetes - 2024. Diabetes Care. 2024; 47(Suppl 1):S1-S321. Available at: https://diabetesjournals.org/care/issue/47/Supplement_167631 - Mounjaro (tirzepatide) injection package insert. Indianapolis, IN: Eli Lilly and Company; 2024 Nov.69808 - Zepbound (tirzepatide) injection package insert. Indianapolis, IN: Eli Lilly and Company; 2024 Nov.70130 - US Food and Drug Administration (FDA). FDA Medwatch - Certain Type of Medicines Approved for Type 2 Diabetes and Obesity: Drug Safety Communication - Update on FDA’s Ongoing Evaluation of Reports of Suicidal Thoughts or Actions. Retrieved January 11, 2024. Available on the World Wide Web at: https://www.fda.gov/drugs/drug-safety-and-availability/update-fdas-ongoing-evaluation-reports-suicidal-thoughts-or-actions-patients-taking-certain-type.70364 - Drugs and Lactation Database (LactMed) [e-book]. Bethesda (MD): National Institute of Child Health and Human Development; 2006- . Available from: https://www.ncbi.nlm.nih.gov/books/NBK501922/. Accessed February 21, 2024.

        Mechanism of Action

        Tirzepatide is a dual glucose-dependent insulinotropic polypeptide (GIP) receptor and glucagon-like peptide-1 (GLP-1) receptor agonist. It is a 39-amino-acid modified peptide with a C20 fatty diacid moiety that enables albumin binding and prolongs the half-life. Tirzepatide selectively binds to and activates both the GIP and GLP-1 receptors, the targets for native GIP and GLP-1. Tirzepatide enhances first- and second-phase insulin secretion, and reduces glucagon levels, both in a glucose dependent manner.[67631] Tirzepatide also promotes weight loss. GLP-1 is a physiological regulator of appetite and caloric intake. Nonclinical studies suggest the addition of GIP may further contribute to the regulation of food intake.[69808]

        Revision Date: 11/18/2024, 10:01:50 PM

        References

        67631 - Mounjaro (tirzepatide) injection package insert. Indianapolis, IN: Eli Lilly and Company; 2024 Nov.69808 - Zepbound (tirzepatide) injection package insert. Indianapolis, IN: Eli Lilly and Company; 2024 Nov.

        Pharmacokinetics

        Tirzepatide is given via subcutaneous administration. Steady-state plasma concentrations were achieved following 4 weeks of once weekly administration. Tirzepatide exposure increases in a dose-proportional manner. The mean apparent steady-state volume of distribution (Vd) following subcutaneous administration is approximately 10.3 L. Tirzepatide is 99% bound to plasma albumin. The apparent population mean clearance is 0.061 L/hour. Tirzepatide is metabolized by proteolytic cleavage of the peptide backbone, beta-oxidation of the C20 fatty diacid moiety and amide hydrolysis. Tirzepatide metabolites are primarily excreted via urine and feces. Intact tirzepatide is not observed in urine or feces. The elimination half-life is approximately 5 days.[67631][69808]

         

        Affected cytochrome P450 (CYP450) isoenzymes and drug transporters: None

        Route-Specific Pharmacokinetics

        Subcutaneous Route

        Following subcutaneous administration of tirzepatide, the time to maximum plasma concentration ranges from 8 to 72 hours. The mean absolute bioavailability following subcutaneous administration is 80%. Similar exposure was achieved with subcutaneous administration in the abdomen, thigh, or upper arm.[67631][69808]

        Special Populations

        Hepatic Impairment

        Hepatic impairment does not impact the pharmacokinetics of tirzepatide. The pharmacokinetics (after a single 5 mg dose) was evaluated in patients with different degrees of hepatic impairment (mild, moderate, severe) compared with subjects with normal hepatic function.[67631][69808]

        Renal Impairment

        Renal impairment does not impact the pharmacokinetics of tirzepatide. The pharmacokinetics (after a single 5 mg dose) was evaluated in patients with different degrees of renal impairment (mild, moderate, severe, ESRD) compared with subjects with normal renal function. This was also shown for patients with both type 2 diabetes mellitus and renal impairment based on data from clinical studies.[67631][69808]

        Pediatrics

        The pharmacokinetic parameters of tirzepatide have not been studied in pediatric subjects.[67631][69808]

        Geriatric

        Age did not significantly affect the pharmacokinetics of tirzepatide.[67631][69808]

        Gender Differences

        Sex did not significantly affect the pharmacokinetics of tirzepatide.[67631][69808]

        Ethnic Differences

        Race (71% White, 11% Asian, 9% American Indian or Alaska Native, and 8% Black or African American) and ethinicity did not significantly affect the pharmacokinetics of tirzepatide.[67631][69808]

        Obesity

        Body weight did not significantly affect the pharmacokinetics of tirzepatide.[67631][69808]

        Revision Date: 11/18/2024, 10:01:50 PM

        References

        67631 - Mounjaro (tirzepatide) injection package insert. Indianapolis, IN: Eli Lilly and Company; 2024 Nov.69808 - Zepbound (tirzepatide) injection package insert. Indianapolis, IN: Eli Lilly and Company; 2024 Nov.

        Pregnancy/Breast-feeding

        contraception requirements, pregnancy

        Tirzepatide (Zepbound) for the treatment of obesity or weight management should not be used during pregnancy because weight loss offers no potential benefit to a pregnant woman and may result in fetal harm due to the potential hazard of maternal weight loss to the fetus. There is a pregnancy exposure registry for women who are exposed to tirzepatide intended for weight management (Zepbound) during pregnancy. Contact Eli Lilly and Company at 1-800-LillyRx (1-800-545-5979) for more information.[69808] According to the American Association of Clinical Endocrinologists the and American College of Endocrinology (AACE/ACE) Obesity Clinical Practice Guidelines, weight loss medications must not be used during pregnancy; these guidelines recommend contraception requirements for patients of childbearing potential; those receiving tirzepatide for weight reduction should use adequate contraception and discontinue tirzepatide if pregnancy occurs.[62881] Counsel female patients about the potential risk to the fetus during pregnancy and regarding contraception requirements during tirzepatide treatment for any indication. Use of tirzepatide may reduce the efficacy of oral hormonal contraceptives due to delayed gastric emptying. This delay is largest after the first dose and diminishes over time. Advise patients using oral hormonal contraceptives to switch to a non-oral contraceptive method, or add a barrier method of contraception for 4 weeks after initiation and for 4 weeks after each dose escalation with tirzepatide.[67631] [69808] There are no adequate data or clinical studies of tirzepatide use for the treatment of type 2 diabetes mellitus (T2DM) in pregnant women to inform a drug-associated risk for adverse developmental outcomes; use in pregnancy only if the potential benefit justifies the potential risk to the fetus. In pregnant rats administered tirzepatide during organogenesis, fetal growth reductions and fetal abnormalities occurred at clinical exposure in maternal rats based on AUC. In rabbits administered tirzepatide during organogenesis, fetal growth reductions were observed at clinically relevant exposures based on AUC. These adverse embryo/fetal effects in animals coincided with pharmacological effects on maternal weight and food consumption.[67631] The American College of Obstetricians and Gynecologists (ACOG) and the American Diabetes Association (ADA) continue to recommend human insulin as the standard of care in women with diabetes or gestational diabetes mellitus (GDM) requiring medical therapy; insulin does not cross the placenta.[64926] [62358]

        breast-feeding

        Use tirzepatide with caution during breast-feeding. There is no information regarding the presence of tirzepatide in human milk, the effects of tirzepatide on the breastfed infant, or the effects of the drug on milk production.[67631] [69808] If tirzepatide for the management of type 2 diabetes mellitus (T2DM) is discontinued and blood glucose is not controlled on diet and exercise alone, the clinician may consider insulin therapy. Oral hypoglycemics may also be considered. Metformin monotherapy may be appropriate for some patients as available studies indicate low excretion in milk and that maternal use during breast-feeding is not expected to result in side effects to a healthy nursing infant. Some experts recommend using metformin with caution if the patient is breastfeeding a newborn or a premature neonate with reduced renal function.[31407] [31408] [31409] [32459] [70364] Because acarbose has limited systemic absorption, which results in minimal maternal plasma concentrations, clinically significant exposure via breast milk is not expected; therefore, this agent may be an alternative if postprandial glucose control is needed.[46303] Glyburide may be a suitable alternative since it was not detected in the breast milk of lactating women who received single and multiple doses of glyburide.[31568] If any oral hypoglycemics are used during breast-feeding, the nursing infant should be monitored for signs of hypoglycemia, such as increased fussiness or somnolence.[46104]

        Revision Date: 11/18/2024, 10:01:50 PM

        References

        31407 - Hale TW, Kristensen JH, Hackett LP, et al. Transfer of metformin into human milk. Diabetologia 2002;45:1509-14.31408 - Gardiner SJ, Kirkpatrick CMJ, Begg EJ, et al. Transfer of metformin into human milk. Clin Pharmacol Ther 2003;73:71-7.31409 - Briggs GG, Ambrose PJ, Nageotte MP, et al. Excretion of metformin into breast milk and the effect on nursing infants. Obstet Gynecol 2005;105:1437-41.31568 - Feig DS, Donat DJ, Briggs GG, et al. Transfer of glyburide and glipizide into breast milk. Diabetes Care 2005;28:1851-5.32459 - Glueck CJ, Salehi M, Sieve L, et al. Growth, motor, and social development in breast- and formula- fed infants of metformin-treated women with polycystic ovary syndrome. J Pediatr 2006;148:628-32.46104 - Spencer JP, Gonzalez LS, Barnhart DJ. Medications in the breast-feeding mother. Am Fam Physician 2001; 64:119-126.46303 - Everett J. Use of oral antidiabetic agents during breastfeeding. J Hum Lact 1997;13:319-21.62358 - American College of Obstetricians and Gynecologists (ACOG) Committee on Practice Bulletins-Obstetrics. Practice Bulletin No. 190: Gestational Diabetes Mellitus. Obstet Gynecol. 2018;131:e49-e64. Reaffirmed 2019.62881 - Garvey WT, Mechanick JI, Brett EM, et al; Reviewers of the AACE/ACE Obesity Clinical Practice Guidelines. American Association of Clinical Endocrinologists and American College of Endocrinology comprehensive clinical practice guidelines for medical care of patients with obesity. Endocr Pract. 2016 Jul;22 Suppl 3:1-203. Epub 2016 May 24.64926 - American Diabetes Association. Standards of Medical Care in Diabetes - 2024. Diabetes Care. 2024; 47(Suppl 1):S1-S321. Available at: https://diabetesjournals.org/care/issue/47/Supplement_167631 - Mounjaro (tirzepatide) injection package insert. Indianapolis, IN: Eli Lilly and Company; 2024 Nov.69808 - Zepbound (tirzepatide) injection package insert. Indianapolis, IN: Eli Lilly and Company; 2024 Nov.70364 - Drugs and Lactation Database (LactMed) [e-book]. Bethesda (MD): National Institute of Child Health and Human Development; 2006- . Available from: https://www.ncbi.nlm.nih.gov/books/NBK501922/. Accessed February 21, 2024.

        Interactions

        Level 2 (Major)

        • Chloroquine
        • Desogestrel; Ethinyl Estradiol
        • Dienogest; Estradiol valerate
        • Drospirenone
        • Drospirenone; Estetrol
        • Drospirenone; Estradiol
        • Drospirenone; Ethinyl Estradiol
        • Drospirenone; Ethinyl Estradiol; Levomefolate
        • Elagolix; Estradiol; Norethindrone acetate
        • Estradiol; Levonorgestrel
        • Estradiol; Norethindrone
        • Estradiol; Norgestimate
        • Ethinyl Estradiol; Norelgestromin
        • Ethinyl Estradiol; Norethindrone Acetate
        • Ethinyl Estradiol; Norgestrel
        • Ethynodiol Diacetate; Ethinyl Estradiol
        • Etonogestrel; Ethinyl Estradiol
        • Leuprolide; Norethindrone
        • Levonorgestrel
        • Levonorgestrel; Ethinyl Estradiol
        • Levonorgestrel; Ethinyl Estradiol; Ferrous Bisglycinate
        • Levonorgestrel; Ethinyl Estradiol; Ferrous Fumarate
        • Norethindrone
        • Norethindrone Acetate; Ethinyl Estradiol; Ferrous fumarate
        • Norethindrone; Ethinyl Estradiol
        • Norethindrone; Ethinyl Estradiol; Ferrous fumarate
        • Norgestimate; Ethinyl Estradiol
        • Norgestrel
        • Oral Contraceptives
        • Relugolix; Estradiol; Norethindrone acetate
        • Segesterone Acetate; Ethinyl Estradiol

        Level 3 (Moderate)

        • Acebutolol
        • Acetaminophen; Aspirin
        • Acetaminophen; Aspirin, ASA; Caffeine
        • Acetaminophen; Aspirin; Diphenhydramine
        • Acetaminophen; Chlorpheniramine; Dextromethorphan; Phenylephrine
        • Acetaminophen; Chlorpheniramine; Dextromethorphan; Pseudoephedrine
        • Acetaminophen; Chlorpheniramine; Phenylephrine
        • Acetaminophen; Dextromethorphan; Guaifenesin; Phenylephrine
        • Acetaminophen; Dextromethorphan; Guaifenesin; Pseudoephedrine
        • Acetaminophen; Dextromethorphan; Phenylephrine
        • Acetaminophen; Dextromethorphan; Pseudoephedrine
        • Acetaminophen; Guaifenesin; Phenylephrine
        • Acetaminophen; Phenylephrine
        • Acetaminophen; Pseudoephedrine
        • Acrivastine; Pseudoephedrine
        • Albuterol; Budesonide
        • Aliskiren; Hydrochlorothiazide, HCTZ
        • Amiloride; Hydrochlorothiazide, HCTZ
        • Aminosalicylate sodium, Aminosalicylic acid
        • Amlodipine; Benazepril
        • Amlodipine; Olmesartan
        • Amlodipine; Valsartan
        • Amlodipine; Valsartan; Hydrochlorothiazide, HCTZ
        • Amoxicillin; Clarithromycin; Omeprazole
        • Amphetamine
        • Amphetamine; Dextroamphetamine
        • Androgens
        • Angiotensin II receptor antagonists
        • Angiotensin-converting enzyme inhibitors
        • Aripiprazole
        • Articaine; Epinephrine
        • Asenapine
        • Aspirin, ASA
        • Aspirin, ASA; Butalbital; Caffeine
        • Aspirin, ASA; Caffeine
        • Aspirin, ASA; Caffeine; Orphenadrine
        • Aspirin, ASA; Carisoprodol; Codeine
        • Aspirin, ASA; Citric Acid; Sodium Bicarbonate
        • Aspirin, ASA; Dipyridamole
        • Aspirin, ASA; Omeprazole
        • Aspirin, ASA; Oxycodone
        • Atazanavir
        • Atazanavir; Cobicistat
        • Atenolol
        • Atenolol; Chlorthalidone
        • atypical antipsychotic
        • Azelastine; Fluticasone
        • Azilsartan
        • Azilsartan; Chlorthalidone
        • Beclomethasone
        • Benazepril
        • Benazepril; Hydrochlorothiazide, HCTZ
        • Benzoic Acid; Hyoscyamine; Methenamine; Methylene Blue; Phenyl Salicylate
        • Benzphetamine
        • Beta-blockers
        • Betamethasone
        • Betaxolol
        • Bismuth Subsalicylate
        • Bismuth Subsalicylate; Metronidazole; Tetracycline
        • Bisoprolol
        • Bisoprolol; Hydrochlorothiazide, HCTZ
        • Bortezomib
        • Brexpiprazole
        • Brimonidine; Timolol
        • Brompheniramine; Dextromethorphan; Phenylephrine
        • Brompheniramine; Phenylephrine
        • Brompheniramine; Pseudoephedrine
        • Brompheniramine; Pseudoephedrine; Dextromethorphan
        • Budesonide
        • Budesonide; Formoterol
        • Budesonide; Glycopyrrolate; Formoterol
        • Bupivacaine; Epinephrine
        • Butalbital; Aspirin; Caffeine; Codeine
        • Candesartan
        • Candesartan; Hydrochlorothiazide, HCTZ
        • Captopril
        • Captopril; Hydrochlorothiazide, HCTZ
        • Carbamazepine
        • Cariprazine
        • Carteolol
        • Carvedilol
        • Cetirizine; Pseudoephedrine
        • Chlophedianol; Dexchlorpheniramine; Pseudoephedrine
        • Chlorothiazide
        • Chlorpheniramine; Dextromethorphan; Phenylephrine
        • Chlorpheniramine; Dextromethorphan; Pseudoephedrine
        • Chlorpheniramine; Ibuprofen; Pseudoephedrine
        • Chlorpheniramine; Phenylephrine
        • Chlorpheniramine; Pseudoephedrine
        • Chlorthalidone
        • Choline Salicylate; Magnesium Salicylate
        • Chromium
        • Ciclesonide
        • Ciprofloxacin
        • Clarithromycin
        • Clozapine
        • Codeine; Guaifenesin; Pseudoephedrine
        • Codeine; Phenylephrine; Promethazine
        • Corticosteroids
        • Cortisone
        • Cyclosporine
        • Danazol
        • Darunavir
        • Darunavir; Cobicistat
        • Darunavir; Cobicistat; Emtricitabine; Tenofovir alafenamide
        • Deflazacort
        • Delafloxacin
        • Desloratadine; Pseudoephedrine
        • Dexamethasone
        • Dexbrompheniramine; Dextromethorphan; Phenylephrine
        • Dexbrompheniramine; Pseudoephedrine
        • Dexchlorpheniramine; Dextromethorphan; Pseudoephedrine
        • Dexmethylphenidate
        • Dextroamphetamine
        • Dextromethorphan; Diphenhydramine; Phenylephrine
        • Dextromethorphan; Guaifenesin; Phenylephrine
        • Dextromethorphan; Guaifenesin; Pseudoephedrine
        • Diethylpropion
        • Diphenhydramine; Phenylephrine
        • Disopyramide
        • Dobutamine
        • Dopamine
        • Dorzolamide; Timolol
        • Doxapram
        • Enalapril, Enalaprilat
        • Enalapril; Hydrochlorothiazide, HCTZ
        • Ephedrine
        • Ephedrine; Guaifenesin
        • Epinephrine
        • Eprosartan
        • Eprosartan; Hydrochlorothiazide, HCTZ
        • Esmolol
        • Esterified Estrogens; Methyltestosterone
        • Fenofibrate
        • Fenofibric Acid
        • Fexofenadine; Pseudoephedrine
        • Fibric acid derivatives
        • Fludrocortisone
        • Flunisolide
        • Fluoxetine
        • Fluticasone
        • Fluticasone; Salmeterol
        • Fluticasone; Umeclidinium; Vilanterol
        • Fluticasone; Vilanterol
        • Formoterol; Mometasone
        • Fosamprenavir
        • Fosinopril
        • Fosinopril; Hydrochlorothiazide, HCTZ
        • Gemfibrozil
        • Gemifloxacin
        • Glimepiride
        • Glipizide
        • Glipizide; Metformin
        • Glyburide
        • Glyburide; Metformin
        • Green Tea
        • Guaifenesin; Phenylephrine
        • Guaifenesin; Pseudoephedrine
        • Hydrochlorothiazide, HCTZ
        • Hydrochlorothiazide, HCTZ; Moexipril
        • Hydrocortisone
        • Hydroxychloroquine
        • Hyoscyamine; Methenamine; Methylene Blue; Phenyl Salicylate; Sodium Biphosphate
        • Ibuprofen; Pseudoephedrine
        • Iloperidone
        • Indapamide
        • Indinavir
        • Insulin Aspart
        • Insulin Aspart; Insulin Aspart Protamine
        • Insulin Degludec
        • Insulin Degludec; Liraglutide
        • Insulin Detemir
        • Insulin Glargine
        • Insulin Glargine; Lixisenatide
        • Insulin Glulisine
        • Insulin Lispro
        • Insulin Lispro; Insulin Lispro Protamine
        • Insulin, Inhaled
        • Insulins
        • Irbesartan
        • Irbesartan; Hydrochlorothiazide, HCTZ
        • Isocarboxazid
        • Isophane Insulin (NPH)
        • Isoproterenol
        • Labetalol
        • Lansoprazole; Amoxicillin; Clarithromycin
        • Levobunolol
        • Levofloxacin
        • Lidocaine; Epinephrine
        • Linezolid
        • Lisdexamfetamine
        • Lisinopril
        • Lisinopril; Hydrochlorothiazide, HCTZ
        • Lopinavir; Ritonavir
        • Loratadine; Pseudoephedrine
        • Lorcaserin
        • Losartan
        • Losartan; Hydrochlorothiazide, HCTZ
        • Lumateperone
        • Lurasidone
        • Mafenide
        • Magnesium Salicylate
        • Meglitinides
        • Metformin; Repaglinide
        • Methamphetamine
        • Methenamine; Sodium Salicylate
        • Methylphenidate
        • Methylprednisolone
        • Methyltestosterone
        • Metolazone
        • Metoprolol
        • Metoprolol; Hydrochlorothiazide, HCTZ
        • Metyrapone
        • Midodrine
        • Moexipril
        • Mometasone
        • Monoamine oxidase inhibitors
        • Moxifloxacin
        • Nadolol
        • Naproxen; Pseudoephedrine
        • Nateglinide
        • Nebivolol
        • Nelfinavir
        • Niacin, Niacinamide
        • Nirmatrelvir; Ritonavir
        • Norepinephrine
        • Ofloxacin
        • Olanzapine
        • Olanzapine; Fluoxetine
        • Olanzapine; Samidorphan
        • Olmesartan
        • Olmesartan; Amlodipine; Hydrochlorothiazide, HCTZ
        • Olmesartan; Hydrochlorothiazide, HCTZ
        • Olopatadine; Mometasone
        • Oxandrolone
        • Oxymetholone
        • Paliperidone
        • Pentamidine
        • Pentoxifylline
        • Perindopril
        • Perindopril; Amlodipine
        • Phendimetrazine
        • Phenelzine
        • Phentermine
        • Phentermine; Topiramate
        • Phenylephrine
        • Pindolol
        • Pioglitazone; Glimepiride
        • Prasterone, Dehydroepiandrosterone, DHEA (Dietary Supplements)
        • Prasterone, Dehydroepiandrosterone, DHEA (FDA-approved)
        • Prednisolone
        • Prednisone
        • Prilocaine; Epinephrine
        • Promethazine; Phenylephrine
        • Propranolol
        • Protease inhibitors
        • Pseudoephedrine
        • Pseudoephedrine; Triprolidine
        • Quetiapine
        • Quinapril
        • Quinapril; Hydrochlorothiazide, HCTZ
        • Quinolones
        • Racepinephrine
        • Ramipril
        • Regular Insulin
        • Regular Insulin; Isophane Insulin (NPH)
        • Repaglinide
        • Risperidone
        • Ritonavir
        • Sacubitril; Valsartan
        • Salicylates
        • Salsalate
        • Saquinavir
        • Serdexmethylphenidate; Dexmethylphenidate
        • Sotalol
        • Spironolactone; Hydrochlorothiazide, HCTZ
        • Sulfadiazine
        • Sulfamethoxazole; Trimethoprim, SMX-TMP, Cotrimoxazole
        • Sulfasalazine
        • Sulfonamides
        • Sulfonylureas
        • Sympathomimetics
        • Tacrolimus
        • Tegaserod
        • Telmisartan
        • Telmisartan; Amlodipine
        • Telmisartan; Hydrochlorothiazide, HCTZ
        • Testosterone
        • Theophylline, Aminophylline
        • Thiazide diuretics
        • Timolol
        • Tipranavir
        • Trandolapril
        • Trandolapril; Verapamil
        • Tranylcypromine
        • Triamcinolone
        • Triamterene; Hydrochlorothiazide, HCTZ
        • Valsartan
        • Valsartan; Hydrochlorothiazide, HCTZ
        • Vitamin B Complex Supplements
        • Vonoprazan; Amoxicillin; Clarithromycin
        • Warfarin
        • Ziprasidone

        Level 4 (Minor)

        • Acetazolamide
        • Bumetanide
        • Carbonic anhydrase inhibitors
        • Chlorpromazine
        • Clonidine
        • Codeine; Promethazine
        • Diazoxide
        • Ethacrynic Acid
        • Ethotoin
        • Fluphenazine
        • Fosphenytoin
        • Furosemide
        • Levothyroxine
        • Levothyroxine; Liothyronine (Porcine)
        • Levothyroxine; Liothyronine (Synthetic)
        • Liothyronine
        • Loop diuretics
        • Methazolamide
        • Nicotine
        • Orlistat
        • Perphenazine
        • Perphenazine; Amitriptyline
        • Phenothiazines
        • Prochlorperazine
        • Promethazine
        • Promethazine; Dextromethorphan
        • Thioridazine
        • Thyroid hormones
        • Torsemide
        • Triamterene
        • Trifluoperazine
        Acebutolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present. [28618] [29403] [30489] [30575] [32916] [53617] [62853] Acetaminophen; Aspirin, ASA; Caffeine: (Moderate) Monitor blood glucose during concomitant incretin mimetic and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. [29403] [61171] Acetaminophen; Aspirin: (Moderate) Monitor blood glucose during concomitant incretin mimetic and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. [29403] [61171] Acetaminophen; Aspirin; diphenhydrAMINE: (Moderate) Monitor blood glucose during concomitant incretin mimetic and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. [29403] [61171] Acetaminophen; Chlorpheniramine; Dextromethorphan; Phenylephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. [44662] [51002] Acetaminophen; Chlorpheniramine; Dextromethorphan; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. [44662] [51002] Acetaminophen; Chlorpheniramine; Phenylephrine : (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. [44662] [51002] Acetaminophen; Dextromethorphan; guaiFENesin; Phenylephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. [44662] [51002] Acetaminophen; Dextromethorphan; guaiFENesin; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. [44662] [51002] Acetaminophen; Dextromethorphan; Phenylephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. [44662] [51002] Acetaminophen; Dextromethorphan; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. [44662] [51002] Acetaminophen; guaiFENesin; Phenylephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. [44662] [51002] Acetaminophen; Phenylephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. [44662] [51002] Acetaminophen; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. [44662] [51002] acetaZOLAMIDE: (Minor) Carbonic anhydrase inhibitors may alter blood sugar. Both hyperglycemia and hypoglycemia have been described in patients treated with acetazolamide. This should be taken into consideration in patients with impaired glucose tolerance or diabetes mellitus who are receiving antidiabetic agents. Monitor blood glucose and for changes in glycemic control and be alert for evidence of an interaction. [28267] [28294] [57357] Acrivastine; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. [44662] [51002] Albuterol; Budesonide: (Moderate) Monitor blood glucose during concomitant corticosteroid and incretin mimetic use; an incretin mimetic dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells. [28032] [30585] [51002] [51324] [62853] Aliskiren; hydroCHLOROthiazide, HCTZ: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity. [29403] aMILoride; hydroCHLOROthiazide, HCTZ: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity. [29403] Aminosalicylate sodium, Aminosalicylic acid: (Moderate) Monitor blood glucose during concomitant incretin mimetic and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. [29403] [61171] amLODIPine; Benazepril: (Moderate) Monitor blood glucose during concomitant incretin mimetic and angiotensin-converting enzyme (ACE) inhibitor use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. [61325] amLODIPine; Olmesartan: (Moderate) Monitor blood glucose during concomitant incretin mimetic and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. [32198] [42591] amLODIPine; Valsartan: (Moderate) Monitor blood glucose during concomitant incretin mimetic and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. [32198] [42591] amLODIPine; Valsartan; hydroCHLOROthiazide, HCTZ: (Moderate) Monitor blood glucose during concomitant incretin mimetic and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. [32198] [42591] (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity. [29403] Amoxicillin; Clarithromycin; Omeprazole: (Moderate) The concomitant use of clarithromycin and antidiabetic agents can result in significant hypoglycemia. Careful monitoring of blood glucose is recommended. [28238] Amphetamine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. [44662] [51002] Amphetamine; Dextroamphetamine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. [44662] [51002] Androgens: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Monitor blood glucose and HbA1C when these drugs are used together. [33919] [33920] [33921] [33922] [33923] [33924] Angiotensin II receptor antagonists: (Moderate) Monitor blood glucose during concomitant incretin mimetic and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. [32198] [42591] Angiotensin-converting enzyme inhibitors: (Moderate) Monitor blood glucose during concomitant incretin mimetic and angiotensin-converting enzyme (ACE) inhibitor use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. [61325] ARIPiprazole: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and incretin mimetic use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition. [28915] [30575] Articaine; EPINEPHrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. [44662] [51002] Asenapine: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and incretin mimetic use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition. [28915] [30575] Aspirin, ASA: (Moderate) Monitor blood glucose during concomitant incretin mimetic and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. [29403] [61171] Aspirin, ASA; Butalbital; Caffeine: (Moderate) Monitor blood glucose during concomitant incretin mimetic and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. [29403] [61171] Aspirin, ASA; Caffeine: (Moderate) Monitor blood glucose during concomitant incretin mimetic and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. [29403] [61171] Aspirin, ASA; Caffeine; Orphenadrine: (Moderate) Monitor blood glucose during concomitant incretin mimetic and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. [29403] [61171] Aspirin, ASA; Carisoprodol; Codeine: (Moderate) Monitor blood glucose during concomitant incretin mimetic and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. [29403] [61171] Aspirin, ASA; Citric Acid; Sodium Bicarbonate: (Moderate) Monitor blood glucose during concomitant incretin mimetic and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. [29403] [61171] Aspirin, ASA; Dipyridamole: (Moderate) Monitor blood glucose during concomitant incretin mimetic and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. [29403] [61171] Aspirin, ASA; Omeprazole: (Moderate) Monitor blood glucose during concomitant incretin mimetic and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. [29403] [61171] Aspirin, ASA; oxyCODONE: (Moderate) Monitor blood glucose during concomitant incretin mimetic and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. [29403] [61171] Atazanavir: (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of protease inhibitors. Patients taking antidiabetic agents should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated. [30575] [50113] [50814] Atazanavir; Cobicistat: (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of protease inhibitors. Patients taking antidiabetic agents should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated. [30575] [50113] [50814] Atenolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present. [28618] [29403] [30489] [30575] [32916] [53617] [62853] Atenolol; Chlorthalidone: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present. [28618] [29403] [30489] [30575] [32916] [53617] [62853] (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity. [29403] atypical antipsychotic: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and incretin mimetic use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition. [28915] [30575] Azelastine; Fluticasone: (Moderate) Monitor blood glucose during concomitant corticosteroid and incretin mimetic use; an incretin mimetic dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells. [28032] [30585] [51002] [51324] [62853] Azilsartan: (Moderate) Monitor blood glucose during concomitant incretin mimetic and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. [32198] [42591] Azilsartan; Chlorthalidone: (Moderate) Monitor blood glucose during concomitant incretin mimetic and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. [32198] [42591] (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity. [29403] Beclomethasone: (Moderate) Monitor blood glucose during concomitant corticosteroid and incretin mimetic use; an incretin mimetic dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells. [28032] [30585] [51002] [51324] [62853] Benazepril: (Moderate) Monitor blood glucose during concomitant incretin mimetic and angiotensin-converting enzyme (ACE) inhibitor use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. [61325] Benazepril; hydroCHLOROthiazide, HCTZ: (Moderate) Monitor blood glucose during concomitant incretin mimetic and angiotensin-converting enzyme (ACE) inhibitor use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. [61325] (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity. [29403] Benzoic Acid; Hyoscyamine; Methenamine; Methylene Blue; Phenyl Salicylate: (Moderate) Monitor blood glucose during concomitant incretin mimetic and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. [29403] [61171] Benzphetamine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. [44662] [51002] Beta-blockers: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present. [28618] [29403] [30489] [30575] [32916] [53617] [62853] Betamethasone: (Moderate) Monitor blood glucose during concomitant corticosteroid and incretin mimetic use; an incretin mimetic dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells. [28032] [30585] [51002] [51324] [62853] Betaxolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present. [28618] [29403] [30489] [30575] [32916] [53617] [62853] Bismuth Subsalicylate: (Moderate) Monitor blood glucose during concomitant incretin mimetic and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. [29403] [61171] Bismuth Subsalicylate; metroNIDAZOLE; Tetracycline: (Moderate) Monitor blood glucose during concomitant incretin mimetic and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. [29403] [61171] Bisoprolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present. [28618] [29403] [30489] [30575] [32916] [53617] [62853] Bisoprolol; hydroCHLOROthiazide, HCTZ: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present. [28618] [29403] [30489] [30575] [32916] [53617] [62853] (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity. [29403] Bortezomib: (Moderate) During clinical trials of bortezomib, hypoglycemia and hyperglycemia were reported in diabetic patients receiving antidiabetic agents. Patients taking antidiabetic agents and receiving bortezomib treatment may require close monitoring of their blood glucose levels and dosage adjustment of their medication. [28383] Brexpiprazole: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and incretin mimetic use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition. [28915] [30575] Brimonidine; Timolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present. [28618] [29403] [30489] [30575] [32916] [53617] [62853] Brompheniramine; Dextromethorphan; Phenylephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. [44662] [51002] Brompheniramine; Phenylephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. [44662] [51002] Brompheniramine; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. [44662] [51002] Brompheniramine; Pseudoephedrine; Dextromethorphan: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. [44662] [51002] Budesonide: (Moderate) Monitor blood glucose during concomitant corticosteroid and incretin mimetic use; an incretin mimetic dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells. [28032] [30585] [51002] [51324] [62853] Budesonide; Formoterol: (Moderate) Monitor blood glucose during concomitant corticosteroid and incretin mimetic use; an incretin mimetic dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells. [28032] [30585] [51002] [51324] [62853] Budesonide; Glycopyrrolate; Formoterol: (Moderate) Monitor blood glucose during concomitant corticosteroid and incretin mimetic use; an incretin mimetic dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells. [28032] [30585] [51002] [51324] [62853] Bumetanide: (Minor) Loop diuretics, such as bumetanide, furosemide, and torsemide, may cause hyperglycemia and glycosuria in patients with diabetes mellitus, probably due to diuretic-induced hypokalemia. Because of this, a potential pharmacodynamic interaction exists between these drugs and all antidiabetic agents, including incretin mimetics. This interference can lead to a loss of diabetic control, so diabetic patients should be monitored closely if these drugs are initiated. [28429] [28620] [29353] BUPivacaine; EPINEPHrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. [44662] [51002] Butalbital; Aspirin; Caffeine; Codeine: (Moderate) Monitor blood glucose during concomitant incretin mimetic and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. [29403] [61171] Candesartan: (Moderate) Monitor blood glucose during concomitant incretin mimetic and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. [32198] [42591] Candesartan; hydroCHLOROthiazide, HCTZ: (Moderate) Monitor blood glucose during concomitant incretin mimetic and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. [32198] [42591] (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity. [29403] Captopril: (Moderate) Monitor blood glucose during concomitant incretin mimetic and angiotensin-converting enzyme (ACE) inhibitor use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. [61325] Captopril; hydroCHLOROthiazide, HCTZ: (Moderate) Monitor blood glucose during concomitant incretin mimetic and angiotensin-converting enzyme (ACE) inhibitor use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. [61325] (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity. [29403] carBAMazepine: (Moderate) Consider increased clinical or laboratory monitoring for carbamazepine if administered with tirzepatide as the oral absorption of carbamazepine may be altered. Tirzepatide delays gastric emptying and therefore has the potential to affect absorption of other orally administered medications, particularly those with a narrow therapeutic index. [67631] Carbonic anhydrase inhibitors: (Minor) Carbonic anhydrase inhibitors may alter blood sugar. Both hyperglycemia and hypoglycemia have been described in patients treated with acetazolamide. This should be taken into consideration in patients with impaired glucose tolerance or diabetes mellitus who are receiving antidiabetic agents. Monitor blood glucose and for changes in glycemic control and be alert for evidence of an interaction. [28267] [28294] [57357] Cariprazine: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and incretin mimetic use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition. [28915] [30575] Carteolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present. [28618] [29403] [30489] [30575] [32916] [53617] [62853] Carvedilol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present. [28618] [29403] [30489] [30575] [32916] [53617] [62853] Cetirizine; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. [44662] [51002] Chlophedianol; Dexchlorpheniramine; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. [44662] [51002] Chloroquine: (Major) Careful monitoring of blood glucose is recommended when chloroquine and antidiabetic agents, including the incretin mimetics, are coadministered. A decreased dose of the antidiabetic agent may be necessary as severe hypoglycemia has been reported in patients treated concomitantly with chloroquine and an antidiabetic agent. [29758] Chlorothiazide: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity. [29403] Chlorpheniramine; Dextromethorphan; Phenylephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. [44662] [51002] Chlorpheniramine; Dextromethorphan; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. [44662] [51002] Chlorpheniramine; Ibuprofen; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. [44662] [51002] Chlorpheniramine; Phenylephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. [44662] [51002] Chlorpheniramine; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. [44662] [51002] chlorproMAZINE: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted. [28915] [30575] Chlorthalidone: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity. [29403] Choline Salicylate; Magnesium Salicylate: (Moderate) Monitor blood glucose during concomitant incretin mimetic and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. [29403] [61171] Chromium: (Moderate) Chromium dietary supplements may lower blood glucose. As part of the glucose tolerance factor molecule, chromium appears to facilitate the binding of insulin to insulin receptors in tissues and to aid in glucose metabolism. Because blood glucose may be lowered by the use of chromium, patients who are on antidiabetic agents may need dose adjustments. Close monitoring of blood glucose is recommended. [25731] [25732] Ciclesonide: (Moderate) Monitor blood glucose during concomitant corticosteroid and incretin mimetic use; an incretin mimetic dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells. [28032] [30585] [51002] [51324] [62853] Ciprofloxacin: (Moderate) Monitor blood glucose during concomitant incretin mimetic and quinolone use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. [28423] [28424] [43411] [62028] [65562] Clarithromycin: (Moderate) The concomitant use of clarithromycin and antidiabetic agents can result in significant hypoglycemia. Careful monitoring of blood glucose is recommended. [28238] cloNIDine: (Minor) Increased frequency of blood glucose monitoring may be required when clonidine is given with antidiabetic agents. Since clonidine inhibits the release of catecholamines, clonidine may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Clonidine does not appear to impair recovery from hypoglycemia, and has not been found to impair glucose tolerance in diabetic patients. [29533] [30585] [44086] cloZAPine: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and incretin mimetic use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition. [28915] [30575] Codeine; guaiFENesin; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. [44662] [51002] Codeine; Phenylephrine; Promethazine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. [44662] [51002] (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted. [28915] [30575] Codeine; Promethazine: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted. [28915] [30575] Corticosteroids: (Moderate) Monitor blood glucose during concomitant corticosteroid and incretin mimetic use; an incretin mimetic dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells. [28032] [30585] [51002] [51324] [62853] Cortisone: (Moderate) Monitor blood glucose during concomitant corticosteroid and incretin mimetic use; an incretin mimetic dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells. [28032] [30585] [51002] [51324] [62853] cycloSPORINE: (Moderate) Patients should be monitored for worsening of glycemic control if therapy with cyclosporine is initiated in patients receiving antidiabetic agents, including tirzepatide. Cyclosporine has been reported to cause hyperglycemia. It may have direct beta-cell toxicity; the effects may be dose-related. [67631] Danazol: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Monitor blood glucose and HbA1C when these drugs are used together. [33919] [33920] [33921] [33922] [33923] [33924] Darunavir: (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of protease inhibitors. Patients taking antidiabetic agents should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated. [30575] [50113] [50814] Darunavir; Cobicistat: (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of protease inhibitors. Patients taking antidiabetic agents should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated. [30575] [50113] [50814] Darunavir; Cobicistat; Emtricitabine; Tenofovir alafenamide: (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of protease inhibitors. Patients taking antidiabetic agents should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated. [30575] [50113] [50814] Deflazacort: (Moderate) Monitor blood glucose during concomitant corticosteroid and incretin mimetic use; an incretin mimetic dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells. [28032] [30585] [51002] [51324] [62853] Delafloxacin: (Moderate) Monitor blood glucose during concomitant incretin mimetic and quinolone use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. [28423] [28424] [43411] [62028] [65562] Desloratadine; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. [44662] [51002] Desogestrel; Ethinyl Estradiol: (Major) Advise patients receiving tirzepatide and oral contraceptives to switch to a non-oral contraceptive method or to add a barrier method of contraception for 4 weeks after initiation and for 4 weeks after each dose escalation of tirzepatide. Tirzepatide delays gastric emptying and may reduce the rate and extent of estrogen and progestin absorption which may reduce efficacy. Gastric emptying delays are greatest after the first dose of tirzepatide and diminish over time. Hormonal contraceptives that are not administered orally should not be affected. Additionally, estrogens can impair glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day. [30585] [62853] [67631] dexAMETHasone: (Moderate) Monitor blood glucose during concomitant corticosteroid and incretin mimetic use; an incretin mimetic dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells. [28032] [30585] [51002] [51324] [62853] Dexbrompheniramine; Dextromethorphan; Phenylephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. [44662] [51002] Dexbrompheniramine; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. [44662] [51002] Dexchlorpheniramine; Dextromethorphan; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. [44662] [51002] Dexmethylphenidate: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. [44662] [51002] Dextroamphetamine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. [44662] [51002] Dextromethorphan; diphenhydrAMINE; Phenylephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. [44662] [51002] Dextromethorphan; guaiFENesin; Phenylephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. [44662] [51002] Dextromethorphan; guaiFENesin; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. [44662] [51002] Diazoxide: (Minor) Diazoxide, when administered intravenously or orally, produces a prompt dose-related increase in blood glucose level, due primarily to an inhibition of insulin release from the pancreas, and also to an extrapancreatic effect. The hyperglycemic effect begins within an hour and generally lasts no more than 8 hours in the presence of normal renal function. The hyperglycemic effect of diazoxide is expected to be antagonized by certain antidiabetic agents (e.g., insulin or a sulfonylurea). Blood glucose should be closely monitored. [49068] Dienogest; Estradiol valerate: (Major) Advise patients receiving tirzepatide and oral contraceptives to switch to a non-oral contraceptive method or to add a barrier method of contraception for 4 weeks after initiation and for 4 weeks after each dose escalation of tirzepatide. Tirzepatide delays gastric emptying and may reduce the rate and extent of estrogen and progestin absorption which may reduce efficacy. Gastric emptying delays are greatest after the first dose of tirzepatide and diminish over time. Hormonal contraceptives that are not administered orally should not be affected. Additionally, estrogens can impair glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day. [30585] [62853] [67631] Diethylpropion: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. [44662] [51002] diphenhydrAMINE; Phenylephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. [44662] [51002] Disopyramide: (Moderate) Disopyramide may enhance the hypoglycemic effects of antidiabetic agents. Patients receiving this combination should be monitored for changes in glycemic control. [28228] DOBUTamine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. [44662] [51002] DOPamine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. [44662] [51002] Dorzolamide; Timolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present. [28618] [29403] [30489] [30575] [32916] [53617] [62853] Doxapram: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. [44662] [51002] Drospirenone: (Major) Advise patients receiving tirzepatide and oral contraceptives to switch to a non-oral contraceptive method or to add a barrier method of contraception for 4 weeks after initiation and for 4 weeks after each dose escalation of tirzepatide. Tirzepatide delays gastric emptying and may reduce the rate and extent of estrogen and progestin absorption which may reduce efficacy. Gastric emptying delays are greatest after the first dose of tirzepatide and diminish over time. Hormonal contraceptives that are not administered orally should not be affected. Additionally, estrogens can impair glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day. [30585] [62853] [67631] Drospirenone; Estetrol: (Major) Advise patients receiving tirzepatide and oral contraceptives to switch to a non-oral contraceptive method or to add a barrier method of contraception for 4 weeks after initiation and for 4 weeks after each dose escalation of tirzepatide. Tirzepatide delays gastric emptying and may reduce the rate and extent of estrogen and progestin absorption which may reduce efficacy. Gastric emptying delays are greatest after the first dose of tirzepatide and diminish over time. Hormonal contraceptives that are not administered orally should not be affected. Additionally, estrogens can impair glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day. [30585] [62853] [67631] Drospirenone; Estradiol: (Major) Advise patients receiving tirzepatide and oral contraceptives to switch to a non-oral contraceptive method or to add a barrier method of contraception for 4 weeks after initiation and for 4 weeks after each dose escalation of tirzepatide. Tirzepatide delays gastric emptying and may reduce the rate and extent of estrogen and progestin absorption which may reduce efficacy. Gastric emptying delays are greatest after the first dose of tirzepatide and diminish over time. Hormonal contraceptives that are not administered orally should not be affected. Additionally, estrogens can impair glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day. [30585] [62853] [67631] Drospirenone; Ethinyl Estradiol: (Major) Advise patients receiving tirzepatide and oral contraceptives to switch to a non-oral contraceptive method or to add a barrier method of contraception for 4 weeks after initiation and for 4 weeks after each dose escalation of tirzepatide. Tirzepatide delays gastric emptying and may reduce the rate and extent of estrogen and progestin absorption which may reduce efficacy. Gastric emptying delays are greatest after the first dose of tirzepatide and diminish over time. Hormonal contraceptives that are not administered orally should not be affected. Additionally, estrogens can impair glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day. [30585] [62853] [67631] Drospirenone; Ethinyl Estradiol; Levomefolate: (Major) Advise patients receiving tirzepatide and oral contraceptives to switch to a non-oral contraceptive method or to add a barrier method of contraception for 4 weeks after initiation and for 4 weeks after each dose escalation of tirzepatide. Tirzepatide delays gastric emptying and may reduce the rate and extent of estrogen and progestin absorption which may reduce efficacy. Gastric emptying delays are greatest after the first dose of tirzepatide and diminish over time. Hormonal contraceptives that are not administered orally should not be affected. Additionally, estrogens can impair glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day. [30585] [62853] [67631] Elagolix; Estradiol; Norethindrone acetate: (Major) Advise patients receiving tirzepatide and oral contraceptives to switch to a non-oral contraceptive method or to add a barrier method of contraception for 4 weeks after initiation and for 4 weeks after each dose escalation of tirzepatide. Tirzepatide delays gastric emptying and may reduce the rate and extent of estrogen and progestin absorption which may reduce efficacy. Gastric emptying delays are greatest after the first dose of tirzepatide and diminish over time. Hormonal contraceptives that are not administered orally should not be affected. Additionally, estrogens can impair glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day. [30585] [62853] [67631] Enalapril, Enalaprilat: (Moderate) Monitor blood glucose during concomitant incretin mimetic and angiotensin-converting enzyme (ACE) inhibitor use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. [61325] Enalapril; hydroCHLOROthiazide, HCTZ: (Moderate) Monitor blood glucose during concomitant incretin mimetic and angiotensin-converting enzyme (ACE) inhibitor use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. [61325] (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity. [29403] ePHEDrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. [44662] [51002] ePHEDrine; guaiFENesin: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. [44662] [51002] EPINEPHrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. [44662] [51002] Eprosartan: (Moderate) Monitor blood glucose during concomitant incretin mimetic and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. [32198] [42591] Eprosartan; hydroCHLOROthiazide, HCTZ: (Moderate) Monitor blood glucose during concomitant incretin mimetic and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. [32198] [42591] (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity. [29403] Esmolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present. [28618] [29403] [30489] [30575] [32916] [53617] [62853] Esterified Estrogens; methylTESTOSTERone: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Monitor blood glucose and HbA1C when these drugs are used together. [33919] [33920] [33921] [33922] [33923] [33924] Estradiol; Levonorgestrel: (Major) Advise patients receiving tirzepatide and oral contraceptives to switch to a non-oral contraceptive method or to add a barrier method of contraception for 4 weeks after initiation and for 4 weeks after each dose escalation of tirzepatide. Tirzepatide delays gastric emptying and may reduce the rate and extent of estrogen and progestin absorption which may reduce efficacy. Gastric emptying delays are greatest after the first dose of tirzepatide and diminish over time. Hormonal contraceptives that are not administered orally should not be affected. Additionally, estrogens can impair glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day. [30585] [62853] [67631] Estradiol; Norethindrone: (Major) Advise patients receiving tirzepatide and oral contraceptives to switch to a non-oral contraceptive method or to add a barrier method of contraception for 4 weeks after initiation and for 4 weeks after each dose escalation of tirzepatide. Tirzepatide delays gastric emptying and may reduce the rate and extent of estrogen and progestin absorption which may reduce efficacy. Gastric emptying delays are greatest after the first dose of tirzepatide and diminish over time. Hormonal contraceptives that are not administered orally should not be affected. Additionally, estrogens can impair glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day. [30585] [62853] [67631] Estradiol; Norgestimate: (Major) Advise patients receiving tirzepatide and oral contraceptives to switch to a non-oral contraceptive method or to add a barrier method of contraception for 4 weeks after initiation and for 4 weeks after each dose escalation of tirzepatide. Tirzepatide delays gastric emptying and may reduce the rate and extent of estrogen and progestin absorption which may reduce efficacy. Gastric emptying delays are greatest after the first dose of tirzepatide and diminish over time. Hormonal contraceptives that are not administered orally should not be affected. Additionally, estrogens can impair glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day. [30585] [62853] [67631] Ethacrynic Acid: (Minor) Loop diuretics, such as bumetanide, furosemide, and torsemide, may cause hyperglycemia and glycosuria in patients with diabetes mellitus, probably due to diuretic-induced hypokalemia. Because of this, a potential pharmacodynamic interaction exists between these drugs and all antidiabetic agents, including incretin mimetics. This interference can lead to a loss of diabetic control, so diabetic patients should be monitored closely if these drugs are initiated. [28429] [28620] [29353] Ethinyl Estradiol; Norelgestromin: (Major) Advise patients receiving tirzepatide and oral contraceptives to switch to a non-oral contraceptive method or to add a barrier method of contraception for 4 weeks after initiation and for 4 weeks after each dose escalation of tirzepatide. Tirzepatide delays gastric emptying and may reduce the rate and extent of estrogen and progestin absorption which may reduce efficacy. Gastric emptying delays are greatest after the first dose of tirzepatide and diminish over time. Hormonal contraceptives that are not administered orally should not be affected. Additionally, estrogens can impair glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day. [30585] [62853] [67631] Ethinyl Estradiol; Norethindrone Acetate: (Major) Advise patients receiving tirzepatide and oral contraceptives to switch to a non-oral contraceptive method or to add a barrier method of contraception for 4 weeks after initiation and for 4 weeks after each dose escalation of tirzepatide. Tirzepatide delays gastric emptying and may reduce the rate and extent of estrogen and progestin absorption which may reduce efficacy. Gastric emptying delays are greatest after the first dose of tirzepatide and diminish over time. Hormonal contraceptives that are not administered orally should not be affected. Additionally, estrogens can impair glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day. [30585] [62853] [67631] Ethinyl Estradiol; Norgestrel: (Major) Advise patients receiving tirzepatide and oral contraceptives to switch to a non-oral contraceptive method or to add a barrier method of contraception for 4 weeks after initiation and for 4 weeks after each dose escalation of tirzepatide. Tirzepatide delays gastric emptying and may reduce the rate and extent of estrogen and progestin absorption which may reduce efficacy. Gastric emptying delays are greatest after the first dose of tirzepatide and diminish over time. Hormonal contraceptives that are not administered orally should not be affected. Additionally, estrogens can impair glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day. [30585] [62853] [67631] Ethotoin: (Minor) Ethotoin can decrease the hypoglycemic effects of incretin mimetics by producing an increase in blood glucose levels. Patients receiving incretin mimetics should be closely monitored for signs indicating loss of diabetic control when therapy with a hydantoin is instituted. Conversely, patients should be closely monitored for signs of hypoglycemia when therapy with a hydantoin is discontinued. [23813] Ethynodiol Diacetate; Ethinyl Estradiol: (Major) Advise patients receiving tirzepatide and oral contraceptives to switch to a non-oral contraceptive method or to add a barrier method of contraception for 4 weeks after initiation and for 4 weeks after each dose escalation of tirzepatide. Tirzepatide delays gastric emptying and may reduce the rate and extent of estrogen and progestin absorption which may reduce efficacy. Gastric emptying delays are greatest after the first dose of tirzepatide and diminish over time. Hormonal contraceptives that are not administered orally should not be affected. Additionally, estrogens can impair glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day. [30585] [62853] [67631] Etonogestrel; Ethinyl Estradiol: (Major) Advise patients receiving tirzepatide and oral contraceptives to switch to a non-oral contraceptive method or to add a barrier method of contraception for 4 weeks after initiation and for 4 weeks after each dose escalation of tirzepatide. Tirzepatide delays gastric emptying and may reduce the rate and extent of estrogen and progestin absorption which may reduce efficacy. Gastric emptying delays are greatest after the first dose of tirzepatide and diminish over time. Hormonal contraceptives that are not administered orally should not be affected. Additionally, estrogens can impair glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day. [30585] [62853] [67631] Fenofibrate: (Moderate) Monitor blood glucose during concomitant incretin mimetic and fibric acid derivative use; an incretin mimetic dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. [30585] [62853] Fenofibric Acid: (Moderate) Monitor blood glucose during concomitant incretin mimetic and fibric acid derivative use; an incretin mimetic dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. [30585] [62853] Fexofenadine; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. [44662] [51002] Fibric acid derivatives: (Moderate) Monitor blood glucose during concomitant incretin mimetic and fibric acid derivative use; an incretin mimetic dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. [30585] [62853] Fludrocortisone: (Moderate) Monitor blood glucose during concomitant corticosteroid and incretin mimetic use; an incretin mimetic dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells. [28032] [30585] [51002] [51324] [62853] Flunisolide: (Moderate) Monitor blood glucose during concomitant corticosteroid and incretin mimetic use; an incretin mimetic dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells. [28032] [30585] [51002] [51324] [62853] FLUoxetine: (Moderate) Monitor blood glucose during concomitant incretin mimetic and fluoxetine use; an incretin mimetic dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. [30585] [32127] [44058] [44059] fluPHENAZine: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted. [28915] [30575] Fluticasone: (Moderate) Monitor blood glucose during concomitant corticosteroid and incretin mimetic use; an incretin mimetic dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells. [28032] [30585] [51002] [51324] [62853] Fluticasone; Salmeterol: (Moderate) Monitor blood glucose during concomitant corticosteroid and incretin mimetic use; an incretin mimetic dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells. [28032] [30585] [51002] [51324] [62853] Fluticasone; Umeclidinium; Vilanterol: (Moderate) Monitor blood glucose during concomitant corticosteroid and incretin mimetic use; an incretin mimetic dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells. [28032] [30585] [51002] [51324] [62853] Fluticasone; Vilanterol: (Moderate) Monitor blood glucose during concomitant corticosteroid and incretin mimetic use; an incretin mimetic dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells. [28032] [30585] [51002] [51324] [62853] Formoterol; Mometasone: (Moderate) Monitor blood glucose during concomitant corticosteroid and incretin mimetic use; an incretin mimetic dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells. [28032] [30585] [51002] [51324] [62853] Fosamprenavir: (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of protease inhibitors. Patients taking antidiabetic agents should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated. [30575] [50113] [50814] Fosinopril: (Moderate) Monitor blood glucose during concomitant incretin mimetic and angiotensin-converting enzyme (ACE) inhibitor use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. [61325] Fosinopril; hydroCHLOROthiazide, HCTZ: (Moderate) Monitor blood glucose during concomitant incretin mimetic and angiotensin-converting enzyme (ACE) inhibitor use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. [61325] (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity. [29403] Fosphenytoin: (Minor) Fosphenytoin can decrease the hypoglycemic effects of incretin mimetics by producing an increase in blood glucose levels. Patients receiving incretin mimetics should be closely monitored for signs indicating loss of diabetic control when therapy with a hydantoin is instituted. Conversely, patients should be closely monitored for signs of hypoglycemia when therapy with a hydantoin is discontinued. [23813] Furosemide: (Minor) Loop diuretics, such as bumetanide, furosemide, and torsemide, may cause hyperglycemia and glycosuria in patients with diabetes mellitus, probably due to diuretic-induced hypokalemia. Because of this, a potential pharmacodynamic interaction exists between these drugs and all antidiabetic agents, including incretin mimetics. This interference can lead to a loss of diabetic control, so diabetic patients should be monitored closely if these drugs are initiated. [28429] [28620] [29353] Gemfibrozil: (Moderate) Monitor blood glucose during concomitant incretin mimetic and fibric acid derivative use; an incretin mimetic dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. [30585] [62853] Gemifloxacin: (Moderate) Monitor blood glucose during concomitant incretin mimetic and quinolone use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. [28423] [28424] [43411] [62028] [65562] Glimepiride: (Moderate) When tirzepatide is used with insulin secretagogues such as the sulfonylureas, consider lowering the dose of the sulfonylureas to reduce the risk of hypoglycemia and monitor the blood glucose concentration more frequently. Patients receiving tirzepatide in combination with sulfonylureas may have an increased risk of hypoglycemia, including severe hypoglycemia. [67631] glipiZIDE: (Moderate) When tirzepatide is used with insulin secretagogues such as the sulfonylureas, consider lowering the dose of the sulfonylureas to reduce the risk of hypoglycemia and monitor the blood glucose concentration more frequently. Patients receiving tirzepatide in combination with sulfonylureas may have an increased risk of hypoglycemia, including severe hypoglycemia. [67631] glipiZIDE; metFORMIN: (Moderate) When tirzepatide is used with insulin secretagogues such as the sulfonylureas, consider lowering the dose of the sulfonylureas to reduce the risk of hypoglycemia and monitor the blood glucose concentration more frequently. Patients receiving tirzepatide in combination with sulfonylureas may have an increased risk of hypoglycemia, including severe hypoglycemia. [67631] glyBURIDE: (Moderate) When tirzepatide is used with insulin secretagogues such as the sulfonylureas, consider lowering the dose of the sulfonylureas to reduce the risk of hypoglycemia and monitor the blood glucose concentration more frequently. Patients receiving tirzepatide in combination with sulfonylureas may have an increased risk of hypoglycemia, including severe hypoglycemia. [67631] glyBURIDE; metFORMIN: (Moderate) When tirzepatide is used with insulin secretagogues such as the sulfonylureas, consider lowering the dose of the sulfonylureas to reduce the risk of hypoglycemia and monitor the blood glucose concentration more frequently. Patients receiving tirzepatide in combination with sulfonylureas may have an increased risk of hypoglycemia, including severe hypoglycemia. [67631] Green Tea: (Moderate) Green tea catechins have been shown to decrease serum glucose concentrations in vitro. Patients with diabetes mellitus taking incretin mimetics should be monitored closely for hypoglycemia if consuming green tea. [29904] [29905] guaiFENesin; Phenylephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. [44662] [51002] guaiFENesin; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. [44662] [51002] hydroCHLOROthiazide, HCTZ: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity. [29403] hydroCHLOROthiazide, HCTZ; Moexipril: (Moderate) Monitor blood glucose during concomitant incretin mimetic and angiotensin-converting enzyme (ACE) inhibitor use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. [61325] (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity. [29403] Hydrocortisone: (Moderate) Monitor blood glucose during concomitant corticosteroid and incretin mimetic use; an incretin mimetic dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells. [28032] [30585] [51002] [51324] [62853] Hydroxychloroquine: (Moderate) Monitor blood glucose during concomitant incretin mimetic and hydroxychloroquine use; an incretin mimetic dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. [41806] Hyoscyamine; Methenamine; Methylene Blue; Phenyl Salicylate; Sodium Biphosphate: (Moderate) Monitor blood glucose during concomitant incretin mimetic and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. [29403] [61171] Ibuprofen; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. [44662] [51002] Iloperidone: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and incretin mimetic use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition. [28915] [30575] Indapamide: (Moderate) A potential pharmacodynamic interaction exists between indapamide and antidiabetic agents, like incretin mimetics. Indapamide can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. [29403] [48959] Indinavir: (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of protease inhibitors. Patients taking antidiabetic agents should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated. [30575] [50113] [50814] Insulin Aspart: (Moderate) When tirzepatide is used with insulin, consider lowering the dose of the insulin to reduce the risk of hypoglycemia and monitor the blood glucose concentration more frequently. Patients receiving tirzepatide in combination with insulin may have an increased risk of hypoglycemia, including severe hypoglycemia. [67631] Insulin Aspart; Insulin Aspart Protamine: (Moderate) When tirzepatide is used with insulin, consider lowering the dose of the insulin to reduce the risk of hypoglycemia and monitor the blood glucose concentration more frequently. Patients receiving tirzepatide in combination with insulin may have an increased risk of hypoglycemia, including severe hypoglycemia. [67631] Insulin Degludec: (Moderate) When tirzepatide is used with insulin, consider lowering the dose of the insulin to reduce the risk of hypoglycemia and monitor the blood glucose concentration more frequently. Patients receiving tirzepatide in combination with insulin may have an increased risk of hypoglycemia, including severe hypoglycemia. [67631] Insulin Degludec; Liraglutide: (Moderate) When tirzepatide is used with insulin, consider lowering the dose of the insulin to reduce the risk of hypoglycemia and monitor the blood glucose concentration more frequently. Patients receiving tirzepatide in combination with insulin may have an increased risk of hypoglycemia, including severe hypoglycemia. [67631] Insulin Detemir: (Moderate) When tirzepatide is used with insulin, consider lowering the dose of the insulin to reduce the risk of hypoglycemia and monitor the blood glucose concentration more frequently. Patients receiving tirzepatide in combination with insulin may have an increased risk of hypoglycemia, including severe hypoglycemia. [67631] Insulin Glargine: (Moderate) When tirzepatide is used with insulin, consider lowering the dose of the insulin to reduce the risk of hypoglycemia and monitor the blood glucose concentration more frequently. Patients receiving tirzepatide in combination with insulin may have an increased risk of hypoglycemia, including severe hypoglycemia. [67631] Insulin Glargine; Lixisenatide: (Moderate) When tirzepatide is used with insulin, consider lowering the dose of the insulin to reduce the risk of hypoglycemia and monitor the blood glucose concentration more frequently. Patients receiving tirzepatide in combination with insulin may have an increased risk of hypoglycemia, including severe hypoglycemia. [67631] Insulin Glulisine: (Moderate) When tirzepatide is used with insulin, consider lowering the dose of the insulin to reduce the risk of hypoglycemia and monitor the blood glucose concentration more frequently. Patients receiving tirzepatide in combination with insulin may have an increased risk of hypoglycemia, including severe hypoglycemia. [67631] Insulin Lispro: (Moderate) When tirzepatide is used with insulin, consider lowering the dose of the insulin to reduce the risk of hypoglycemia and monitor the blood glucose concentration more frequently. Patients receiving tirzepatide in combination with insulin may have an increased risk of hypoglycemia, including severe hypoglycemia. [67631] Insulin Lispro; Insulin Lispro Protamine: (Moderate) When tirzepatide is used with insulin, consider lowering the dose of the insulin to reduce the risk of hypoglycemia and monitor the blood glucose concentration more frequently. Patients receiving tirzepatide in combination with insulin may have an increased risk of hypoglycemia, including severe hypoglycemia. [67631] Insulin, Inhaled: (Moderate) When tirzepatide is used with insulin, consider lowering the dose of the insulin to reduce the risk of hypoglycemia and monitor the blood glucose concentration more frequently. Patients receiving tirzepatide in combination with insulin may have an increased risk of hypoglycemia, including severe hypoglycemia. [67631] Insulins: (Moderate) When tirzepatide is used with insulin, consider lowering the dose of the insulin to reduce the risk of hypoglycemia and monitor the blood glucose concentration more frequently. Patients receiving tirzepatide in combination with insulin may have an increased risk of hypoglycemia, including severe hypoglycemia. [67631] Irbesartan: (Moderate) Monitor blood glucose during concomitant incretin mimetic and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. [32198] [42591] Irbesartan; hydroCHLOROthiazide, HCTZ: (Moderate) Monitor blood glucose during concomitant incretin mimetic and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. [32198] [42591] (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity. [29403] Isocarboxazid: (Moderate) Monitor blood glucose during concomitant incretin mimetic and monoamine oxidase inhibitor (MAOI) use; an incretin mimetic dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. [29656] [30585] [59433] Isophane Insulin (NPH): (Moderate) When tirzepatide is used with insulin, consider lowering the dose of the insulin to reduce the risk of hypoglycemia and monitor the blood glucose concentration more frequently. Patients receiving tirzepatide in combination with insulin may have an increased risk of hypoglycemia, including severe hypoglycemia. [67631] Isoproterenol: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. [44662] [51002] Labetalol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present. [28618] [29403] [30489] [30575] [32916] [53617] [62853] Lansoprazole; Amoxicillin; Clarithromycin: (Moderate) The concomitant use of clarithromycin and antidiabetic agents can result in significant hypoglycemia. Careful monitoring of blood glucose is recommended. [28238] Leuprolide; Norethindrone: (Major) Advise patients receiving tirzepatide and oral contraceptives to switch to a non-oral contraceptive method or to add a barrier method of contraception for 4 weeks after initiation and for 4 weeks after each dose escalation of tirzepatide. Tirzepatide delays gastric emptying and may reduce the rate and extent of estrogen and progestin absorption which may reduce efficacy. Gastric emptying delays are greatest after the first dose of tirzepatide and diminish over time. Hormonal contraceptives that are not administered orally should not be affected. Additionally, estrogens can impair glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day. [30585] [62853] [67631] Levobunolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present. [28618] [29403] [30489] [30575] [32916] [53617] [62853] levoFLOXacin: (Moderate) Monitor blood glucose during concomitant incretin mimetic and quinolone use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. [28423] [28424] [43411] [62028] [65562] Levonorgestrel: (Major) Advise patients receiving tirzepatide and oral contraceptives to switch to a non-oral contraceptive method or to add a barrier method of contraception for 4 weeks after initiation and for 4 weeks after each dose escalation of tirzepatide. Tirzepatide delays gastric emptying and may reduce the rate and extent of estrogen and progestin absorption which may reduce efficacy. Gastric emptying delays are greatest after the first dose of tirzepatide and diminish over time. Hormonal contraceptives that are not administered orally should not be affected. Additionally, estrogens can impair glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day. [30585] [62853] [67631] Levonorgestrel; Ethinyl Estradiol: (Major) Advise patients receiving tirzepatide and oral contraceptives to switch to a non-oral contraceptive method or to add a barrier method of contraception for 4 weeks after initiation and for 4 weeks after each dose escalation of tirzepatide. Tirzepatide delays gastric emptying and may reduce the rate and extent of estrogen and progestin absorption which may reduce efficacy. Gastric emptying delays are greatest after the first dose of tirzepatide and diminish over time. Hormonal contraceptives that are not administered orally should not be affected. Additionally, estrogens can impair glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day. [30585] [62853] [67631] Levonorgestrel; Ethinyl Estradiol; Ferrous Bisglycinate: (Major) Advise patients receiving tirzepatide and oral contraceptives to switch to a non-oral contraceptive method or to add a barrier method of contraception for 4 weeks after initiation and for 4 weeks after each dose escalation of tirzepatide. Tirzepatide delays gastric emptying and may reduce the rate and extent of estrogen and progestin absorption which may reduce efficacy. Gastric emptying delays are greatest after the first dose of tirzepatide and diminish over time. Hormonal contraceptives that are not administered orally should not be affected. Additionally, estrogens can impair glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day. [30585] [62853] [67631] Levonorgestrel; Ethinyl Estradiol; Ferrous Fumarate: (Major) Advise patients receiving tirzepatide and oral contraceptives to switch to a non-oral contraceptive method or to add a barrier method of contraception for 4 weeks after initiation and for 4 weeks after each dose escalation of tirzepatide. Tirzepatide delays gastric emptying and may reduce the rate and extent of estrogen and progestin absorption which may reduce efficacy. Gastric emptying delays are greatest after the first dose of tirzepatide and diminish over time. Hormonal contraceptives that are not administered orally should not be affected. Additionally, estrogens can impair glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day. [30585] [62853] [67631] Levothyroxine: (Minor) When thyroid hormones are added to existing diabetes therapy, the glucose-lowering effect may be reduced. Close monitoring of blood glucose is necessary for individuals who use antidiabetic agents whenever there is a change in thyroid treatment. It may be necessary to adjust the dose of antidiabetic agents if thyroid hormones are added or discontinued. Thyroid hormones are important in the regulation of carbohydrate metabolism, gluconeogenesis, the mobilization of glycogen stores, and protein synthesis. [67631] Levothyroxine; Liothyronine (Porcine): (Minor) When thyroid hormones are added to existing diabetes therapy, the glucose-lowering effect may be reduced. Close monitoring of blood glucose is necessary for individuals who use antidiabetic agents whenever there is a change in thyroid treatment. It may be necessary to adjust the dose of antidiabetic agents if thyroid hormones are added or discontinued. Thyroid hormones are important in the regulation of carbohydrate metabolism, gluconeogenesis, the mobilization of glycogen stores, and protein synthesis. [67631] Levothyroxine; Liothyronine (Synthetic): (Minor) When thyroid hormones are added to existing diabetes therapy, the glucose-lowering effect may be reduced. Close monitoring of blood glucose is necessary for individuals who use antidiabetic agents whenever there is a change in thyroid treatment. It may be necessary to adjust the dose of antidiabetic agents if thyroid hormones are added or discontinued. Thyroid hormones are important in the regulation of carbohydrate metabolism, gluconeogenesis, the mobilization of glycogen stores, and protein synthesis. [67631] Lidocaine; EPINEPHrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. [44662] [51002] Linezolid: (Moderate) Hypoglycemia, including symptomatic episodes, has been noted in post-marketing reports with linezolid in patients with diabetes mellitus receiving therapy with antidiabetic agents, such as insulin and oral hypoglycemic agents. Diabetic patients should be monitored for potential hypoglycemic reactions while on linezolid. If hypoglycemia occurs, discontinue or decrease the dose of the antidiabetic agent or discontinue the linezolid therapy. Linezolid is a reversible, nonselective MAO inhibitor and other MAO inhibitors have been associated with hypoglycemic episodes in diabetic patients receiving insulin or oral hypoglycemic agents. [28599] Liothyronine: (Minor) When thyroid hormones are added to existing diabetes therapy, the glucose-lowering effect may be reduced. Close monitoring of blood glucose is necessary for individuals who use antidiabetic agents whenever there is a change in thyroid treatment. It may be necessary to adjust the dose of antidiabetic agents if thyroid hormones are added or discontinued. Thyroid hormones are important in the regulation of carbohydrate metabolism, gluconeogenesis, the mobilization of glycogen stores, and protein synthesis. [67631] Lisdexamfetamine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. [44662] [51002] Lisinopril: (Moderate) Monitor blood glucose during concomitant incretin mimetic and angiotensin-converting enzyme (ACE) inhibitor use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. [61325] Lisinopril; hydroCHLOROthiazide, HCTZ: (Moderate) Monitor blood glucose during concomitant incretin mimetic and angiotensin-converting enzyme (ACE) inhibitor use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. [61325] (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity. [29403] Loop diuretics: (Minor) Loop diuretics, such as bumetanide, furosemide, and torsemide, may cause hyperglycemia and glycosuria in patients with diabetes mellitus, probably due to diuretic-induced hypokalemia. Because of this, a potential pharmacodynamic interaction exists between these drugs and all antidiabetic agents, including incretin mimetics. This interference can lead to a loss of diabetic control, so diabetic patients should be monitored closely if these drugs are initiated. [28429] [28620] [29353] Lopinavir; Ritonavir: (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of protease inhibitors. Patients taking antidiabetic agents should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated. [30575] [50113] [50814] Loratadine; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. [44662] [51002] Lorcaserin: (Moderate) In general, weight reduction may increase the risk of hypoglycemia in patients with type 2 diabetes mellitus treated with antidiabetic agents, such as insulin and/or insulin secretagogues (e.g., sulfonylureas). In clinical trials, lorcaserin use was associated with reports of hypoglycemia. Blood glucose monitoring is warranted in patients with type 2 diabetes prior to starting and during lorcaserin treatment. Dosage adjustments of anti-diabetic medications should be considered. If a patient develops hypoglycemia during treatment, adjust anti-diabetic drug regimen accordingly. Of note, lorcaserin has not been studied in combination with insulin. [51065] Losartan: (Moderate) Monitor blood glucose during concomitant incretin mimetic and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. [32198] [42591] Losartan; hydroCHLOROthiazide, HCTZ: (Moderate) Monitor blood glucose during concomitant incretin mimetic and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. [32198] [42591] (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity. [29403] Lumateperone: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and incretin mimetic use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition. [28915] [30575] Lurasidone: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and incretin mimetic use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition. [28915] [30575] Mafenide: (Moderate) Monitor blood glucose during concomitant incretin mimetic and sulfonamide use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. [29536] [30585] [30623] [32166] [43888] Magnesium Salicylate: (Moderate) Monitor blood glucose during concomitant incretin mimetic and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. [29403] [61171] Meglitinides: (Moderate) When tirzepatide is used with insulin secretagogues such as meglitinides, consider lowering the dose of the meglitinides to reduce the risk of hypoglycemia and monitor the blood glucose concentration more frequently. Patients receiving tirzepatide in combination with meglitinides may have an increased risk of hypoglycemia, including severe hypoglycemia. [67631] metFORMIN; Repaglinide: (Moderate) When tirzepatide is used with insulin secretagogues such as meglitinides, consider lowering the dose of the meglitinides to reduce the risk of hypoglycemia and monitor the blood glucose concentration more frequently. Patients receiving tirzepatide in combination with meglitinides may have an increased risk of hypoglycemia, including severe hypoglycemia. [67631] Methamphetamine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. [44662] [51002] methazolAMIDE: (Minor) Carbonic anhydrase inhibitors may alter blood sugar. Both hyperglycemia and hypoglycemia have been described in patients treated with acetazolamide. This should be taken into consideration in patients with impaired glucose tolerance or diabetes mellitus who are receiving antidiabetic agents. Monitor blood glucose and for changes in glycemic control and be alert for evidence of an interaction. [28267] [28294] [57357] Methenamine; Sodium Salicylate: (Moderate) Monitor blood glucose during concomitant incretin mimetic and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. [29403] [61171] Methylphenidate: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. [44662] [51002] methylPREDNISolone: (Moderate) Monitor blood glucose during concomitant corticosteroid and incretin mimetic use; an incretin mimetic dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells. [28032] [30585] [51002] [51324] [62853] methylTESTOSTERone: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Monitor blood glucose and HbA1C when these drugs are used together. [33919] [33920] [33921] [33922] [33923] [33924] metOLazone: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity. [29403] Metoprolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present. [28618] [29403] [30489] [30575] [32916] [53617] [62853] Metoprolol; hydroCHLOROthiazide, HCTZ: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present. [28618] [29403] [30489] [30575] [32916] [53617] [62853] (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity. [29403] metyraPONE: (Moderate) In patients taking insulin or other antidiabetic agents, the signs and symptoms of acute metyrapone toxicity (e.g., symptoms of acute adrenal insufficiency) may be aggravated or modified. [33528] Midodrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. [44662] [51002] Moexipril: (Moderate) Monitor blood glucose during concomitant incretin mimetic and angiotensin-converting enzyme (ACE) inhibitor use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. [61325] Mometasone: (Moderate) Monitor blood glucose during concomitant corticosteroid and incretin mimetic use; an incretin mimetic dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells. [28032] [30585] [51002] [51324] [62853] Monoamine oxidase inhibitors: (Moderate) Monitor blood glucose during concomitant incretin mimetic and monoamine oxidase inhibitor (MAOI) use; an incretin mimetic dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. [29656] [30585] [59433] Moxifloxacin: (Moderate) Monitor blood glucose during concomitant incretin mimetic and quinolone use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. [28423] [28424] [43411] [62028] [65562] Nadolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present. [28618] [29403] [30489] [30575] [32916] [53617] [62853] Naproxen; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. [44662] [51002] Nateglinide: (Moderate) When tirzepatide is used with insulin secretagogues such as meglitinides, consider lowering the dose of the meglitinides to reduce the risk of hypoglycemia and monitor the blood glucose concentration more frequently. Patients receiving tirzepatide in combination with meglitinides may have an increased risk of hypoglycemia, including severe hypoglycemia. [67631] Nebivolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present. [28618] [29403] [30489] [30575] [32916] [53617] [62853] Nelfinavir: (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of protease inhibitors. Patients taking antidiabetic agents should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated. [30575] [50113] [50814] Niacin, Niacinamide: (Moderate) Niacin (nicotinic acid) interferes with glucose metabolism and can result in hyperglycemia. Changes in glycemic control can usually be corrected through modification of hypoglycemic therapy. Monitor patients taking antidiabetic agents for changes in glycemic control if niacin (nicotinic acid) is added or deleted to the medication regimen. Dosage adjustments may be necessary. [29194] Nicotine: (Minor) Monitor blood glucose concentrations for needed antidiabetic agent dosage adjustments in diabetic patients whenever a change in either nicotine intake or smoking status occurs. Nicotine activates neuroendocrine pathways (e.g., increases in circulating cortisol and catecholamine levels) and may increase plasma glucose. Tobacco smoking is known to aggravate insulin resistance. Cessation of nicotine therapy or tobacco smoking may result in a decrease in blood glucose. [29535] Nirmatrelvir; Ritonavir: (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of protease inhibitors. Patients taking antidiabetic agents should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated. [30575] [50113] [50814] Norepinephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. [44662] [51002] Norethindrone Acetate; Ethinyl Estradiol; Ferrous fumarate: (Major) Advise patients receiving tirzepatide and oral contraceptives to switch to a non-oral contraceptive method or to add a barrier method of contraception for 4 weeks after initiation and for 4 weeks after each dose escalation of tirzepatide. Tirzepatide delays gastric emptying and may reduce the rate and extent of estrogen and progestin absorption which may reduce efficacy. Gastric emptying delays are greatest after the first dose of tirzepatide and diminish over time. Hormonal contraceptives that are not administered orally should not be affected. Additionally, estrogens can impair glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day. [30585] [62853] [67631] Norethindrone: (Major) Advise patients receiving tirzepatide and oral contraceptives to switch to a non-oral contraceptive method or to add a barrier method of contraception for 4 weeks after initiation and for 4 weeks after each dose escalation of tirzepatide. Tirzepatide delays gastric emptying and may reduce the rate and extent of estrogen and progestin absorption which may reduce efficacy. Gastric emptying delays are greatest after the first dose of tirzepatide and diminish over time. Hormonal contraceptives that are not administered orally should not be affected. Additionally, estrogens can impair glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day. [30585] [62853] [67631] Norethindrone; Ethinyl Estradiol: (Major) Advise patients receiving tirzepatide and oral contraceptives to switch to a non-oral contraceptive method or to add a barrier method of contraception for 4 weeks after initiation and for 4 weeks after each dose escalation of tirzepatide. Tirzepatide delays gastric emptying and may reduce the rate and extent of estrogen and progestin absorption which may reduce efficacy. Gastric emptying delays are greatest after the first dose of tirzepatide and diminish over time. Hormonal contraceptives that are not administered orally should not be affected. Additionally, estrogens can impair glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day. [30585] [62853] [67631] Norethindrone; Ethinyl Estradiol; Ferrous fumarate: (Major) Advise patients receiving tirzepatide and oral contraceptives to switch to a non-oral contraceptive method or to add a barrier method of contraception for 4 weeks after initiation and for 4 weeks after each dose escalation of tirzepatide. Tirzepatide delays gastric emptying and may reduce the rate and extent of estrogen and progestin absorption which may reduce efficacy. Gastric emptying delays are greatest after the first dose of tirzepatide and diminish over time. Hormonal contraceptives that are not administered orally should not be affected. Additionally, estrogens can impair glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day. [30585] [62853] [67631] Norgestimate; Ethinyl Estradiol: (Major) Advise patients receiving tirzepatide and oral contraceptives to switch to a non-oral contraceptive method or to add a barrier method of contraception for 4 weeks after initiation and for 4 weeks after each dose escalation of tirzepatide. Tirzepatide delays gastric emptying and may reduce the rate and extent of estrogen and progestin absorption which may reduce efficacy. Gastric emptying delays are greatest after the first dose of tirzepatide and diminish over time. Hormonal contraceptives that are not administered orally should not be affected. Additionally, estrogens can impair glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day. [30585] [62853] [67631] Norgestrel: (Major) Advise patients receiving tirzepatide and oral contraceptives to switch to a non-oral contraceptive method or to add a barrier method of contraception for 4 weeks after initiation and for 4 weeks after each dose escalation of tirzepatide. Tirzepatide delays gastric emptying and may reduce the rate and extent of estrogen and progestin absorption which may reduce efficacy. Gastric emptying delays are greatest after the first dose of tirzepatide and diminish over time. Hormonal contraceptives that are not administered orally should not be affected. Additionally, estrogens can impair glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day. [30585] [62853] [67631] Ofloxacin: (Moderate) Monitor blood glucose during concomitant incretin mimetic and quinolone use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. [28423] [28424] [43411] [62028] [65562] OLANZapine: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and incretin mimetic use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition. [28915] [30575] OLANZapine; FLUoxetine: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and incretin mimetic use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition. [28915] [30575] (Moderate) Monitor blood glucose during concomitant incretin mimetic and fluoxetine use; an incretin mimetic dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. [30585] [32127] [44058] [44059] OLANZapine; Samidorphan: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and incretin mimetic use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition. [28915] [30575] Olmesartan: (Moderate) Monitor blood glucose during concomitant incretin mimetic and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. [32198] [42591] Olmesartan; amLODIPine; hydroCHLOROthiazide, HCTZ: (Moderate) Monitor blood glucose during concomitant incretin mimetic and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. [32198] [42591] (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity. [29403] Olmesartan; hydroCHLOROthiazide, HCTZ: (Moderate) Monitor blood glucose during concomitant incretin mimetic and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. [32198] [42591] (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity. [29403] Olopatadine; Mometasone: (Moderate) Monitor blood glucose during concomitant corticosteroid and incretin mimetic use; an incretin mimetic dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells. [28032] [30585] [51002] [51324] [62853] Oral Contraceptives: (Major) Advise patients receiving tirzepatide and oral contraceptives to switch to a non-oral contraceptive method or to add a barrier method of contraception for 4 weeks after initiation and for 4 weeks after each dose escalation of tirzepatide. Tirzepatide delays gastric emptying and may reduce the rate and extent of estrogen and progestin absorption which may reduce efficacy. Gastric emptying delays are greatest after the first dose of tirzepatide and diminish over time. Hormonal contraceptives that are not administered orally should not be affected. Additionally, estrogens can impair glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day. [30585] [62853] [67631] Orlistat: (Minor) Weight-loss may affect glycemic control in patients with diabetes mellitus. In many patients, glycemic control may improve. A reduction in dose of oral hypoglycemic medications may be required in some patients taking orlistat. Monitor blood glucose and glycemic control and adjust therapy as clinically indicated. [25616] [27971] [60877] [62881] Oxandrolone: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Monitor blood glucose and HbA1C when these drugs are used together. [33919] [33920] [33921] [33922] [33923] [33924] Oxymetholone: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Monitor blood glucose and HbA1C when these drugs are used together. [33919] [33920] [33921] [33922] [33923] [33924] Paliperidone: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and incretin mimetic use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition. [28915] [30575] Pentamidine: (Moderate) Pentamidine can be harmful to pancreatic cells. This effect may lead to hypoglycemia acutely, followed by hyperglycemia with prolonged pentamidine therapy. Patients on antidiabetic agents should be monitored for the need for dosage adjustments during the use of pentamidine. [28879] Pentoxifylline: (Moderate) Pentoxiphylline has been used concurrently with antidiabetic agents without observed problems, but it may enhance the hypoglycemic action of antidiabetic agents. Patients should be monitored for changes in glycemic control while receiving pentoxifylline in combination with antidiabetic agents. [6316] [7238] Perindopril: (Moderate) Monitor blood glucose during concomitant incretin mimetic and angiotensin-converting enzyme (ACE) inhibitor use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. [61325] Perindopril; amLODIPine: (Moderate) Monitor blood glucose during concomitant incretin mimetic and angiotensin-converting enzyme (ACE) inhibitor use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. [61325] Perphenazine: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted. [28915] [30575] Perphenazine; Amitriptyline: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted. [28915] [30575] Phendimetrazine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. [44662] [51002] Phenelzine: (Moderate) Monitor blood glucose during concomitant incretin mimetic and monoamine oxidase inhibitor (MAOI) use; an incretin mimetic dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. [29656] [30585] [59433] Phenothiazines: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted. [28915] [30575] Phentermine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. [44662] [51002] Phentermine; Topiramate: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. [44662] [51002] Phenylephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. [44662] [51002] Pindolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present. [28618] [29403] [30489] [30575] [32916] [53617] [62853] Pioglitazone; Glimepiride: (Moderate) When tirzepatide is used with insulin secretagogues such as the sulfonylureas, consider lowering the dose of the sulfonylureas to reduce the risk of hypoglycemia and monitor the blood glucose concentration more frequently. Patients receiving tirzepatide in combination with sulfonylureas may have an increased risk of hypoglycemia, including severe hypoglycemia. [67631] Prasterone, Dehydroepiandrosterone, DHEA (Dietary Supplements): (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Monitor blood glucose and HbA1C when these drugs are used together. [33919] [33920] [33921] [33922] [33923] [33924] Prasterone, Dehydroepiandrosterone, DHEA (FDA-approved): (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Monitor blood glucose and HbA1C when these drugs are used together. [33919] [33920] [33921] [33922] [33923] [33924] prednisoLONE: (Moderate) Monitor blood glucose during concomitant corticosteroid and incretin mimetic use; an incretin mimetic dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells. [28032] [30585] [51002] [51324] [62853] predniSONE: (Moderate) Monitor blood glucose during concomitant corticosteroid and incretin mimetic use; an incretin mimetic dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells. [28032] [30585] [51002] [51324] [62853] Prilocaine; EPINEPHrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. [44662] [51002] Prochlorperazine: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted. [28915] [30575] Promethazine: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted. [28915] [30575] Promethazine; Dextromethorphan: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted. [28915] [30575] Promethazine; Phenylephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. [44662] [51002] (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted. [28915] [30575] Propranolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present. [28618] [29403] [30489] [30575] [32916] [53617] [62853] Protease inhibitors: (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of protease inhibitors. Patients taking antidiabetic agents should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated. [30575] [50113] [50814] Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. [44662] [51002] Pseudoephedrine; Triprolidine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. [44662] [51002] QUEtiapine: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and incretin mimetic use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition. [28915] [30575] Quinapril: (Moderate) Monitor blood glucose during concomitant incretin mimetic and angiotensin-converting enzyme (ACE) inhibitor use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. [61325] Quinapril; hydroCHLOROthiazide, HCTZ: (Moderate) Monitor blood glucose during concomitant incretin mimetic and angiotensin-converting enzyme (ACE) inhibitor use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. [61325] (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity. [29403] Quinolones: (Moderate) Monitor blood glucose during concomitant incretin mimetic and quinolone use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. [28423] [28424] [43411] [62028] [65562] Racepinephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. [44662] [51002] Ramipril: (Moderate) Monitor blood glucose during concomitant incretin mimetic and angiotensin-converting enzyme (ACE) inhibitor use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. [61325] Regular Insulin: (Moderate) When tirzepatide is used with insulin, consider lowering the dose of the insulin to reduce the risk of hypoglycemia and monitor the blood glucose concentration more frequently. Patients receiving tirzepatide in combination with insulin may have an increased risk of hypoglycemia, including severe hypoglycemia. [67631] Regular Insulin; Isophane Insulin (NPH): (Moderate) When tirzepatide is used with insulin, consider lowering the dose of the insulin to reduce the risk of hypoglycemia and monitor the blood glucose concentration more frequently. Patients receiving tirzepatide in combination with insulin may have an increased risk of hypoglycemia, including severe hypoglycemia. [67631] Relugolix; Estradiol; Norethindrone acetate: (Major) Advise patients receiving tirzepatide and oral contraceptives to switch to a non-oral contraceptive method or to add a barrier method of contraception for 4 weeks after initiation and for 4 weeks after each dose escalation of tirzepatide. Tirzepatide delays gastric emptying and may reduce the rate and extent of estrogen and progestin absorption which may reduce efficacy. Gastric emptying delays are greatest after the first dose of tirzepatide and diminish over time. Hormonal contraceptives that are not administered orally should not be affected. Additionally, estrogens can impair glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day. [30585] [62853] [67631] Repaglinide: (Moderate) When tirzepatide is used with insulin secretagogues such as meglitinides, consider lowering the dose of the meglitinides to reduce the risk of hypoglycemia and monitor the blood glucose concentration more frequently. Patients receiving tirzepatide in combination with meglitinides may have an increased risk of hypoglycemia, including severe hypoglycemia. [67631] risperiDONE: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and incretin mimetic use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition. [28915] [30575] Ritonavir: (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of protease inhibitors. Patients taking antidiabetic agents should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated. [30575] [50113] [50814] Sacubitril; Valsartan: (Moderate) Monitor blood glucose during concomitant incretin mimetic and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. [32198] [42591] Salicylates: (Moderate) Monitor blood glucose during concomitant incretin mimetic and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. [29403] [61171] Salsalate: (Moderate) Monitor blood glucose during concomitant incretin mimetic and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. [29403] [61171] Saquinavir: (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of protease inhibitors. Patients taking antidiabetic agents should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated. [30575] [50113] [50814] Segesterone Acetate; Ethinyl Estradiol: (Major) Advise patients receiving tirzepatide and oral contraceptives to switch to a non-oral contraceptive method or to add a barrier method of contraception for 4 weeks after initiation and for 4 weeks after each dose escalation of tirzepatide. Tirzepatide delays gastric emptying and may reduce the rate and extent of estrogen and progestin absorption which may reduce efficacy. Gastric emptying delays are greatest after the first dose of tirzepatide and diminish over time. Hormonal contraceptives that are not administered orally should not be affected. Additionally, estrogens can impair glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day. [30585] [62853] [67631] Serdexmethylphenidate; Dexmethylphenidate: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. [44662] [51002] Sotalol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present. [28618] [29403] [30489] [30575] [32916] [53617] [62853] Spironolactone; hydroCHLOROthiazide, HCTZ: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity. [29403] sulfADIAZINE: (Moderate) Monitor blood glucose during concomitant incretin mimetic and sulfonamide use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. [29536] [30585] [30623] [32166] [43888] Sulfamethoxazole; Trimethoprim, SMX-TMP, Cotrimoxazole: (Moderate) Monitor blood glucose during concomitant incretin mimetic and sulfonamide use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. [29536] [30585] [30623] [32166] [43888] sulfaSALAzine: (Moderate) Monitor blood glucose during concomitant incretin mimetic and sulfonamide use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. [29536] [30585] [30623] [32166] [43888] Sulfonamides: (Moderate) Monitor blood glucose during concomitant incretin mimetic and sulfonamide use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. [29536] [30585] [30623] [32166] [43888] Sulfonylureas: (Moderate) When tirzepatide is used with insulin secretagogues such as the sulfonylureas, consider lowering the dose of the sulfonylureas to reduce the risk of hypoglycemia and monitor the blood glucose concentration more frequently. Patients receiving tirzepatide in combination with sulfonylureas may have an increased risk of hypoglycemia, including severe hypoglycemia. [67631] Sympathomimetics: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. [44662] [51002] Tacrolimus: (Moderate) Patients should be monitored for worsening of glycemic control if therapy with tacrolimus is initiated in patients receiving antidiabetic agents, including tirzepatide. Tacrolimus has been reported to cause hyperglycemia. Furthermore, tacrolimus has been implicated in causing insulin-dependent diabetes mellitus in patients after renal transplantation. The mechanism of hyperglycemia is thought to be through direct beta-cell toxicity. [30576] [30585] Tegaserod: (Moderate) Tegaserod can enhance gastric emptying in patients with diabetes. Typically, blood glucose could be affected, which, in turn, may affect the clinical response to antidiabetic agents. However, incretin mimetics have been shown to slow gastric emptying. The clinical effects of these competing mechanisms is not known. The dosing of antidiabetic agents may require adjustment and blood glucose should be closely monitored when coadministered with tegaserod. [28956] [61024] Telmisartan: (Moderate) Monitor blood glucose during concomitant incretin mimetic and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. [32198] [42591] Telmisartan; amLODIPine: (Moderate) Monitor blood glucose during concomitant incretin mimetic and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. [32198] [42591] Telmisartan; hydroCHLOROthiazide, HCTZ: (Moderate) Monitor blood glucose during concomitant incretin mimetic and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. [32198] [42591] (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity. [29403] Testosterone: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Monitor blood glucose and HbA1C when these drugs are used together. [33919] [33920] [33921] [33922] [33923] [33924] Theophylline, Aminophylline: (Moderate) Consider increased clinical or laboratory monitoring for aminophylline if administered with tirzepatide as the absorption of aminophylline may be altered. Ttirzepatide delays gastric emptying and therefore has the potential to affect absorption of other orally administered medications, particularly those with a narrow therapeutic index, such as aminophylline, a prodrug for theophylline. Monitor theophylline levels as clinically indicated. This interaction does not occur with IV aminophylline. [67631] (Moderate) Consider increased clinical or laboratory monitoring for theophylline if administered with tirzepatide as the absorption of theophylline may be altered. Ttirzepatide delays gastric emptying and therefore has the potential to affect absorption of other orally administered medications, particularly those with a narrow therapeutic index, such as theophylline. Monitor theophylline levels as clinically indicated. This interaction does not occur with IV theophylline. [67631] Thiazide diuretics: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity. [29403] Thioridazine: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted. [28915] [30575] Thyroid hormones: (Minor) When thyroid hormones are added to existing diabetes therapy, the glucose-lowering effect may be reduced. Close monitoring of blood glucose is necessary for individuals who use antidiabetic agents whenever there is a change in thyroid treatment. It may be necessary to adjust the dose of antidiabetic agents if thyroid hormones are added or discontinued. Thyroid hormones are important in the regulation of carbohydrate metabolism, gluconeogenesis, the mobilization of glycogen stores, and protein synthesis. [67631] Timolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present. [28618] [29403] [30489] [30575] [32916] [53617] [62853] Tipranavir: (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of protease inhibitors. Patients taking antidiabetic agents should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated. [30575] [50113] [50814] Torsemide: (Minor) Loop diuretics, such as bumetanide, furosemide, and torsemide, may cause hyperglycemia and glycosuria in patients with diabetes mellitus, probably due to diuretic-induced hypokalemia. Because of this, a potential pharmacodynamic interaction exists between these drugs and all antidiabetic agents, including incretin mimetics. This interference can lead to a loss of diabetic control, so diabetic patients should be monitored closely if these drugs are initiated. [28429] [28620] [29353] Trandolapril: (Moderate) Monitor blood glucose during concomitant incretin mimetic and angiotensin-converting enzyme (ACE) inhibitor use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. [61325] Trandolapril; Verapamil: (Moderate) Monitor blood glucose during concomitant incretin mimetic and angiotensin-converting enzyme (ACE) inhibitor use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. [61325] Tranylcypromine: (Moderate) Monitor blood glucose during concomitant incretin mimetic and monoamine oxidase inhibitor (MAOI) use; an incretin mimetic dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. [29656] [30585] [59433] Triamcinolone: (Moderate) Monitor blood glucose during concomitant corticosteroid and incretin mimetic use; an incretin mimetic dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells. [28032] [30585] [51002] [51324] [62853] Triamterene: (Minor) Triamterene can decrease the hypoglycemic effects of antidiabetic agents, such as incretin mimetics, by producing an increase in blood glucose levels. Patients on antidiabetics should be monitored for changes in blood glucose control if triamterene is added or deleted. Dosage adjustments may be necessary. [29160] [29403] [30489] Triamterene; hydroCHLOROthiazide, HCTZ: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity. [29403] (Minor) Triamterene can decrease the hypoglycemic effects of antidiabetic agents, such as incretin mimetics, by producing an increase in blood glucose levels. Patients on antidiabetics should be monitored for changes in blood glucose control if triamterene is added or deleted. Dosage adjustments may be necessary. [29160] [29403] [30489] Trifluoperazine: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted. [28915] [30575] Valsartan: (Moderate) Monitor blood glucose during concomitant incretin mimetic and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. [32198] [42591] Valsartan; hydroCHLOROthiazide, HCTZ: (Moderate) Monitor blood glucose during concomitant incretin mimetic and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. [32198] [42591] (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity. [29403] Vitamin B Complex Supplements: (Moderate) Niacin (nicotinic acid) interferes with glucose metabolism and can result in hyperglycemia. Changes in glycemic control can usually be corrected through modification of hypoglycemic therapy. Monitor patients taking antidiabetic agents for changes in glycemic control if niacin (nicotinic acid) is added or deleted to the medication regimen. Dosage adjustments may be necessary. [29194] Vonoprazan; Amoxicillin; Clarithromycin: (Moderate) The concomitant use of clarithromycin and antidiabetic agents can result in significant hypoglycemia. Careful monitoring of blood glucose is recommended. [28238] Warfarin: (Moderate) Monitor for changes in INR and bleeding when tirzepatide is coadministered with warfarin. Dosage adjustments of warfarin may be necessary. Tirzepatide delays gastric emptying, and thereby has the potential to impact the absorption of warfarin. [67631] Ziprasidone: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and incretin mimetic use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition. [28915] [30575]
        Revision Date: 11/18/2024, 10:01:50 PM

        References

        6316 - Trental (pentoxifylline) package insert. Bridgewater, NJ: Sanofi-Aventis Pharmaceuticals Inc.; 2010 Jun.7238 - Apidra (Insulin glulisine) package insert. Kansas City, MO: Aventis Pharmaceuticals, Inc.; 2004 Apr.23813 - Carter BL, Small RE, Mandel MD, et al. Phenytoin-induced hyperglycemia. Am J Hosp Pharm 1981;38:1508-12.25616 - Hollander PA, Elbein SC, Hirsch IB, et al. Role of orlistat in the treatment of obese patients with type 2 diabetes. A 1-year randomized double-blind study. Diabetes Care 1998;21:1288-94.25731 - Anderson RA, Cheng N, Bryden NA, et al. Elevated intakes of supplemental chromium improve glucose and insulin variables in individuals with type 2 diabetes. Diabetes 1997;46:1786-1791.25732 - Ravina A, Slezak L, Mirsky N, et al. Reversal of corticosteroid induced diabetes mellitus with supplemental chromium. Diabet Med 1999;16:164-167.27971 - Xenical (orlistat) package insert. Montgomery, AL: H2-Pharma, LLC; 2022 Nov.28032 - McMahon M, Gerich J, Rizza R. Effects of glucocorticoids on carbohydrate metabolism. Diabetes Metab Rev 1988;4:17-30.28228 - Norpace and Norpace CR (disopyramide) package insert. Chicago, IL: G.D. Searle LLC division of Pfizer Inc; 2016 Aug.28238 - Biaxin (clarithromycin) package insert. North Chicago, IL: AbbVie, Inc.; 2019 Sep.28267 - Acetazolamide package insert. Mahwah, NJ: Lifestar Pharma LLC; 2020 Mar.28294 - Methazolamide tablet package insert. Bridgewater, NJ: Bausch & Lomb Americas, Inc.; 2022 Mar.28383 - Velcade (bortezomib) injection package insert. Lexington, MA: Takeda Pharmaceuticals America, Inc..; 2022 Aug.28423 - Avelox (moxifloxacin) package insert. Whippany, NJ: Bayer HealthCare Pharmaceuticals Inc.; 2020 May.28424 - Factive (gemifloxacin mesylate) package insert. Toronto, ON: Merus Labs International, Inc.; 2019 May.28429 - Lasix (furosemide) package insert. East Brunswick, NJ: Strides Pharma Inc; 2022 Sept.28599 - Zyvox (linezolid) package insert. New York, NY: Pharmacia and Upjohn Company; 2024 Jun.28618 - Tenormin (atenolol) package insert. Morristown, NJ: Almatica Pharma LLC.; 2023 Dec.28620 - Bumex (bumetanide) package insert. Parsippany, NJ: Validus Pharmaceuticals LLC; 2024 Jan.28879 - Pentamidine isethionate injection package insert. East Brunswick, NJ: Avet Pharmaceuticals Inc.; 2021 Jan.28915 - Lindenmayer JP, Czobor P, Volavka J, et al. Changes in glucose and cholesterol levels in patients with schizophrenia treated with typical or atypical antipsychotics. Am J Psych 2003;160:290-96.28956 - Zelnorm (tegaserod maleate) package insert. Louisville, KY: US WorldMeds, LLC; 2019 Mar.29160 - Dyrenium (triamterene) package insert. Miami Lakes, FL: Amdipharm Limited; 2019 Sept.29194 - Niaspan (niacin extended-release tablets) package insert. Miami, FL: Kos Pharmaceuticals, Inc; 2003 July.29353 - Demadex (torsemide) package insert. Nutley, NJ: Roche Laboratories; 2003 Apr.29403 - Gilbert RE, Cooper ME, Krum H. Drug Administration in Patients with Diabetes Mellitus, Safety Considerations. Drug Safety 1998;18:441-55.29533 - McKenney JM, Goodman RP, Wright JT. Use of antihypertensive agents in patients with glucose intolerance. Clin Pharm 1985;4:649-56.29535 - Madsbad S, McNair P, Christensen MS, et al. Influence of smoking on insulin requirement and metbolic status in diabetes mellitus. Diabetes Care 1980;3:41-3.29536 - Chan JC, Cockram CS, Critchley JA. Drug-induced disorders of glucose metabolism. Mechanisms and management. Drug Saf 1996;15:135-57.29656 - Parnate (tranylcypromine) package insert. St. Michael, Barbados: Concordia Pharmaceuticals; 2018 Jan.29758 - Aralen (chloroquine) package insert. Bridgewater, NJ: Sanofi-aventis U.S. LLC.; 2018 Oct.29904 - Shimizu M, Kobayashi Y, Suzuki M, et al. Regulation of intestinal glucose transport by tea catechins. Biofactors 2000;13:61-5.29905 - Sabu MC, Smitha K, Ramadassan K. Anti-diabetic activity of green tea polyphenols and their role in reducing oxidative stress in experimental diabetes. J Ethnopharmacol 2002;83:109-16.30489 - Chobanian AV, Bakris GL, Black HR. The seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: the JNC 7 Report. JAMA 2003;289:2560-71.30575 - Luna B, Feinglos MN. Drug-induced hyperglycemia. JAMA 2001;286:1945-8.30576 - Manske CL. Hyperglycemia and intensive glycemic control in diabetic patients with chronic renal disease. Am J Kidney Dis 1998;32 (Suppl 3):S157-S171.30585 - Pandit MK, Burke J, Gustafson AB, et al. Drug-induced disorders of glucose tolerance. Ann Intern Med 1993;118:529-39.30623 - Lee AJ, Maddix DS. Trimethoprim/sulfamethoxazole-induced hypoglycemia in a patient with acute renal failure. Ann Pharmacother 1997;31:727-32.32127 - Prozac (fluoxetine) capsules package insert. Indianapolis, IN: Eli Lilly and Company; 2023 Aug.32166 - Strevel EL, Kuper A, Gold WL. Severe and protracted hypoglycemia associated with co-trimoxazole [sulfamethoxazole; trimethoprim] use. Lancet Infect Dis 2006;6:178-82.32198 - Avapro (irbesartan) package insert. Bridgewater, NJ: Sanfoi-Aventis U.S. LLC; 2021 Sep.32916 - Lopressor (metoprolol tartrate) tablets and injection. East Hanover, NJ: Novartis Pharmaceuticals Corporation; 2012 Dec.33528 - Metopirone (metyrapone) capsule package insert. Farmingdale, NJ: Direct Success, Inc; 2023 Feb.33919 - Boyanov MA, Boneva Z, Christov VG. Testosterone supplementation in men with type 2 diabetes, visceral obesity, and partial androgen deficiency. Aging Male 2003;6:1-7.33920 - Kapoor D, Goodwin E, Channer KS, et al. Testosterone replacement therapy improves insulin resistance, glycaemic control, visceral adiposity, and hypercholesterolaemia in hypogonadal men with type 2 diabetes. Eur J Clin Endocrinol 2006; 154:899-906.33921 - Hobbs CJ, Jones RE, Plymate SR. Nandrolone, a 19-nortestosterone, enhances insulin-independent glucose uptake in normal men. J Clin Endocrinol Metab 1996; 81:1582-5.33922 - Corrales JJ, Burgo RM, Garcia-Berrocal B, et al. Partial androgen deficiency in aging type 2 diabetic men and its relationship to glycemic control. Metabolism 2004;53:666-72.33923 - Lee CH, Kuo SW, Hung YJ, et al. The effect of testosterone supplement on insulin sensitivity, glucose effectiveness, and acute insulin response after glucose load in male type 2 diabetics. Endocrine Res 2005;31:139-148.33924 - Cohen JC, Hickman R. Insulin resistance and diminished glucose tolerance in powerlifters ingesting anabolic steroids. J Clin Endocrinol Metab 1987;64:960-3.41806 - Plaquenil (hydroxychloroquine) package insert. Dublin, Ireland: Amdipharm Limited; 2023 Dec.42591 - Scheen AJ. Drug Interactions of Clinical Importance with Antihyperglycemic Agents. Drug Saf 2005;28:601-631.43411 - Cipro (ciprofloxacin tablet; suspension) package insert. Whippany, NJ: Bayer HealthCare Pharmaceuticals Inc.; 2024 Sept.43888 - Bactrim and Bactrim DS (sulfamethoxazole and trimethoprim) tablets package insert. Cranbury, NJ: Sun Pharmaceuticals, Inc.; 2024 Jun.44058 - Prozac Weekly (fluoxetine hydrochloride delayed-release capsules) package insert. Indianapolis, IN: Lilly USA, LLC; 2017 Mar.44059 - Fluoxetine hydrochloride tablets for PMDD package insert (generic to Sarafem). Basking Ridge, NJ: TORRENT PHARMA INC; 2023 Aug.44086 - Lantus (insulin glargine [rDNA origin] injection) solution for subcutaneous injection package insert. Bridgewater, NJ: Sanofi-Aventis U.S. LLC; 2023 June.44662 - Condit FS, Campbell RK, White JR. Diabetes. In: Handbook of Nonprescription Drugs. 12th ed. Washington, DC: American Pharmaceutical Association 2000;285:315-359.48959 - Indapamide package insert. Baudette, MN: ANI Pharmaceuticals, Inc.; 2021 Apr.49068 - Proglycem (diazoxide) package insert. Horsham, PA: Teva Pharmaceuticals USA; 2024 July.50113 - Lee EC, Walmsley S, Fantus IG. New-onset diabetes mellitus associated with protease inhibitor therapy in an HIV-positive patient: case report and review. CMAJ. 1999;161(2):161-164.50814 - Carr A, Miller J, Samaras K, Burton S. A syndrome of peripheral lipodystrophy, hyperlipidaemia and insulin resistance in patients receiving HIV protease inhibitors. AIDS. 1998;12(7):F51-F58.51002 - Chan JC, Cockram CS, Critchley JA. Drug-induced disorders of glucose metabolism. Mechanisms and management. Drug Saf 1996;15:135—57.51065 - Belviq and Belviq XR (lorcaserin hydrochloride) package insert. Woodcliff Lake, NJ: Eisai Inc.; 2016 Nov.51324 - Rayos (prednisone) delayed-release tablets package insert. Deerfield, IL: Horizon Pharma USA, Inc.; 2024 June.53617 - Inderal LA (propranolol sustained-release) capsules. Baudette, MN: ANI Pharmaceuticals, Inc. 2023 Nov.57357 - Acetazolamide injection package insert. Big Flats, NY: X-GEN Pharmaceuticals, Inc.; 2013 Mar.59433 - D'Arcy PF, Griffin JF. Interactions with drugs used in the treatment of depressive illness. Adverse Drug React Toxicol Rev. 1995;4:211-31.60877 - Alli (orlistat) capsules. Warren, NJ: GSK Consumer Healthcare; 2016 May.61024 - Adlyxin (Lixisenatide) package insert. Bridgewater, NJ: Sanofi-aventis U.S. LLC; 2024 Nov.61171 - Yosprala (aspirin and omeprazole delayed-release tablets) package insert. Allentown, PA: Genus Lifesciences, Inc.; 2024 Nov.61325 - Prinivil (lisinopril) tablets package insert. Whitehouse Station, NJ: Merck & Co., Inc. 2021 Nov.62028 - Baxdela (delafloxacin) package insert. Lincolnshire, IL: Melinta Therapeutics LLC; 2023 Dec.62853 - Amin M, Suksomboon N. Pharmacotherapy of type 2 diabetes mellitus: an update on drug-drug interactions. Drug Saf. 2014;37:903-919.62881 - Garvey WT, Mechanick JI, Brett EM, et al; Reviewers of the AACE/ACE Obesity Clinical Practice Guidelines. American Association of Clinical Endocrinologists and American College of Endocrinology comprehensive clinical practice guidelines for medical care of patients with obesity. Endocr Pract. 2016 Jul;22 Suppl 3:1-203. Epub 2016 May 24.65562 - Levofloxacin tablets package insert. Piscataway, NJ: Camber Pharmaceuticals, Inc.; 2024 July.67631 - Mounjaro (tirzepatide) injection package insert. Indianapolis, IN: Eli Lilly and Company; 2024 Nov.

        Monitoring Parameters

        • blood glucose
        • glycosylated hemoglobin A1c (HbA1c)
        • weight

        US Drug Names

        • MOUNJARO
        • Zepbound
        Small Elsevier Logo

        Cookies are used by this site. To decline or learn more, visit our cookie notice.


        Copyright © 2024 Elsevier, its licensors, and contributors. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

        Small Elsevier Logo
        RELX Group